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Low-Complexity Intervisibility in Height Fields
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Abstract

Global illumination systems require intervisibility information between pairs of points in a scene. This visibility
problem is computationally complex, and current interactive implementations for dynamic scenes are limited to
crude approximations or small amounts of geometry. We present a novel algorithm to determine intervisibility from
all points of dynamic height fields as visibility horizons in discrete azimuthal directions. The algorithm determines
accurate visibility along each azimuthal direction in time linear in the number of output visibility horizons. This
is achieved by using a novel visibility structure we call the convex hull tree. The key feature of our algorithm is
its ability to incrementally update the convex hull tree such that at each receiver point only the visible parts of the
height field are traversed. This results in low time complexity; compared to previous work, we achieve two orders
of magnitude reduction in the number of algorithm iterations and a speedup of 2.4 to 41 on 10247 height fields,
depending on geometric content.
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1. Introduction

The two major applications for visibility algorithms in com-
puter graphics rendering are geometry culling and lighting.
Firstly, culling is used to accelerate rendering by determin-
ing which geometry should not be sent down the rendering
pipeline, i.e., which geometry is invisible from the viewer.
Secondly, lighting algorithms need to know the visibility of
light sources from each illuminated receiver point. As gener-
ally all scene geometry acts as light sources, global illumina-
tion algorithms need to determine the visibility of the whole
scene from each receiver point. This problem is similar to
that in geometry culling, except orders of magnitude more
complex, as visibility from millions of receiver points needs
to be determined. The problem is largely solved for static
geometry as most of the computation can be performed as a
pre-pass, but dynamic geometry remains an open problem.

In this paper we present a method to determine intervisi-
bility of height field geometry. Height maps describe geome-
try by defining the elevation of a plane as a function of N x N
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surface coordinates. They can be used as standalone objects
or to describe meso- and micro-structure on the surfaces of a
larger-scale object. Another recently popular application for
height field algorithms is producing lighting effects in screen
space, where the depth buffer of a rendered scene is treated
as a height field with effects applied in post-processing. For
non-graphics related applications of height field visibility al-
gorithms, see the survey [Nag94].

Current interactive height field intervisibility methods de-
termine approximate or local visibility in order to produce
effects such as soft global illumination [NS09] or color
bleeding [RGS09]. Current methods are limited to local, ap-
proximate, or noisy effects mainly due to poor scaling of vis-
ibility calculations. The approach that current methods use
involves sampling, for each receiver independently, the sur-
rounding height field where in order to test n sender points
for one receiver point, n iterations are performed. Intervisi-
bility searches based on this approach are variations of what
we in this paper will call the naive method: for each receiver
point K azimuthal directions are chosen and, for each direc-
tion, the height field is traversed outwards from the receiver
one unit length step at a time.
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Table 1: The average number of visible points per direction
for the 10242 height fields in Figure 7.

Height field Visible points  Visible/total
fractal terrain 27.1 5.6 %
brick surface 8.94 1.8 %
sine grid 22.8 4.7 %
blocks 5.56 1.1 %

The main problem in the naive method is that it scales
linearly with respect to the search distance, while visibility
in all practical height fields should scale sub-linearly. In Ta-
ble 1 we counted the average number of visible points for a
single azimuthal direction for different types of height fields
(N =1024) and compared it to the number of evenly spaced
points that were tested for visibility (roughly N/2). In Sec-
tion 6 we will measure the scaling to be between O(N%O1)
and O(N%%%).

In this paper we present a new way of calculating visi-
bility in height fields. The key feature of our method is its
ability to traverse only the visible geometry by effectively
culling the non-visible geometry. Another advantage of our
method is that it produces a more compact description of the
visibility than a simple enumeration of the visible points:
for each receiver point we determine a list of local visibil-
ity horizons where two consecutive horizons always enclose
all adjacent visible height field points. Our algorithm runs in
time linear in the number of output visibility horizons and is
dependent on the height field content. Compared to previous
algorithms, we achieve two orders of magnitude reduction
in the number of iterations required to extract accurate inter-
visibility on 10242 height maps bringing the complexity to
manageable levels, and a speed up of 2.4 to 41 compared to
the naive method, depending on the height field content.

It can be argued that in rendering there is a trend towards
performing an increasing portion of shading and lighting as
a screen-space pass. It will be interesting to see what the full
potential of such methods are. Current screen-space meth-
ods are not able to effortlessly scale to full illumination so-
lutions, but rather settle for producing a limited set of effects
that are computationally feasible. While there are many ob-
stacles to overcome before global illumination with arbitrary
materials and integrated light sources is feasible in screen-
space, our contribution is to overcome the one with the high-
est computational complexity: intervisibility.

2. Previous work

Determining height field intervisibility is essentially a prob-
lem of computational geometry. Finding the visible areas of
a terrain from a single viewpoint [KZ02] [FHTO09], a line
[CS89], or a region [BWWO5] is a problem extensively re-
searched and largely solved. However, algorithms that find
terrain intervisibility at all surface points are significantly
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less studied, and applying single-viewpoint methods to each
height field point is intractable for interactive applications.

Global illumination methods for height fields require in-
tervisibility determination, but unlike our method they so far
exclusively use a scheme where the same visibility search
procedure is performed independently for each height field
point. The naive approach [CoS95] [SLYYOS] is to solve
the visibility in a set of azimuthal directions where each di-
rection is traversed from the receiver point outwards in unit
length steps, and each time the previous slope maximum is
exceeded the new point is known to be visible from the re-
ceiver point. Our method produces results identical to the
naive method.

The naive approach can be accelerated by applying level
of detail (LOD) methods: [NS09] generate multiple levels of
detail of the height field and use the lower resolution lev-
els and sparser sampling when traversing farther from the
receiver, as first introduced in [SNO8]. While faster, the ap-
proximated visibility favors using the method only for soft
effects.

Ambient occlusion methods with falloff terms need to
know the distance of occluding geometry and therefore have
to solve the intervisibility problem as well. Screen-space
ambient occlusion methods [Mit07] [DBSO08] approximate
local scene visibility in image-space by treating the depth
buffer as a height field. The same approach has been used
to produce global illumination effects such as color bleed-
ing [RGS09], which is extended with LOD in [SHR10].
Intervisibility in these methods is determined from sender
and receiver normals only and any occluding geometry in-
between is ignored. While fast and sufficient for approxi-
mate near-field effects, scaling to far-field is problematic: an
occlusion search between sender and receiver is required as
suggested by the authors of [RGS09], making the intervisi-
bility search the same as used by the naive method.

Implementations of the naive method usually trade band-
ing for noise by randomizing sampling patterns per receiver.
In future work, in Section 10, we discuss ways to apply LOD
and to trade banding for noise with our method as well.

More exotic ways to sample the height field have also
been introduced, such as performing a very sparse random-
ized occlusion search per pixel and gathering the final oc-
clusion values from a small neighborhood around a receiver
[HBR*11]. Alternatively, instead of taking simple height
samples, line and area samples can be taken to approxi-
mate the overall occlusion of the near-field geometry [LS10].
While these methods produce fast results, they don’t scale
well to occlusion effects of arbitrary length and are non-
trivial to extend to indirect illumination.

Global illumination methods for generic geometries are
diverse [DBBS06] and also need to address the intervisibil-
ity problem. Excluding various approximations, these meth-
ods traverse all scene geometry for each receiver primitive.
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The problem then becomes making sure that only the effect
of the frontmost layer around the receiver is accounted for.
This has been tackled in [Bun05] and [DSDDO7] by run-
ning several iterations of the algorithm where each iteration
removes extraneous contribution of the overlapping layers.
Another solution to overcome this problem is to use shadow
maps (see the survey [HLHSO03]) to determine the receivers
from the point of view of point light sources. Fast approx-
imate shadow maps [RGK*08] [ADM*08] can be used to
make this approach feasible when many light sources need
to be considered. None of these approaches make use of the
characteristics of height field geometry, and their visibility
solutions become prohibitively expensive for anything but
very small height fields when accurate results are preferred.

Another common approach to solving visibility of scene
geometry is ray tracing, where visibility is queried by shoot-
ing independent rays from a receiver and determining the
closest geometry the rays intersect. Let K be the number
of azimuthal directions in which rays from each point are
cast, and let p, be the average number of visible height field
points from one receiver point in one azimuthal direction.
Then on an N x N height field at least N’K Pa optimally cho-
sen rays have to be traced to determine intervisibility at the
same accuracy as our method. Not including the complexity
of tracing one ray, this already is higher than the time com-
plexity of our method, O(Nsza), where my < pq denotes
the average number of visibility horizons.

We use a compact way to unambiguously describe in-
tervisibility on a line by local horizons as introduced in
[DFM94]. In this model, a local horizon from a viewpoint is
defined at each transition from visibility to invisibility. From
local horizons it is possible to produce the casting set as used
in [N'S09], which is the set of points visible from the receiver
point.

Incidentally, it was shown in [TW10] that a visibility hori-
zon is defined by the points of a convex hull, and that a line
sweep algorithm can incrementally determine global visi-
bility horizons for n points in O(n) time by using a con-
vex hull stack. In order to determine intervisibility, we ex-
tend the ideas of [TW10]: we track a set of convex hulls in-
stead of only one and introduce a novel tree structure to hold
them. Through efficient tree update operations, we maintain
the same linear complexity: n local horizons are extracted in
O(n) time.

3. Height field processing

In this section we describe the highest level framework of
our method with a focus of the process on the scale of the
whole height field. In Section 4 we describe the process of
solving visibility on the scale of a single line. Section 5 de-
fines in detail the algorithm that is executed for each point
on the line. Section 6 establishes the complexity of the al-
gorithm and analyzes its scaling with respect to the height

field size and content. An implementation on the GPU and
optimizations on the code are covered in Section 7 and the
implementation efficiency with respect to available hardware
resources is discussed in Section 8. Section 9 showcases the
actual performance and Section 10 discusses the accuracy of
our method and ways to utilize the visibility information.

The input to our algorithm is a height map consisting
of a regular grid of N x N height values. For each height
field point our algorithm determines visibility in K discrete
azimuthal directions by performing K sweeps through the
height field. For each direction ¢ = %27@0 <k <K, the
height field is swept through in parallel lines that are unit
length apart thus calculating the given azimuthal direction
for all height field points in one sweep.

These lines are stepped through one unit length step at
a time, and visibility backwards along the line is deter-
mined for each step in turn, as demonstrated in Figure 1.
At each step lighting contribution is gathered from the vis-
ible segments of the line and the result is written into the
sweep’s output buffer. The output buffers are axis-aligned
such that the processed lines map to vertical lines in each
output buffer, as demonstrated in Figure 2. As the maximum
number of lines as well as the maximum length of a line in
an arbitrary direction can be at most /2N, the output buffers
are of size ﬁN X \/iN.
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Figure 1: For one azimuthal direction, the height field is
processed in parallel lines (left). For each line, the visibil-
ity horizons are extracted backwards along the line for the
most recent step, receptor R (right).

After the sweeps have been performed, each of the K out-
put buffers contain N? result values. Finally, results across
the output buffers are accumulated into a single result buffer
the size of the input height field, N x N, shown in Figure 2.
At this point visibility of an average of roughly K % height
field samples have been considered for each of the N? sam-
pled receptor points. Unlike previous methods, we require

. 3. . . .
substantially fewer than K NT iterations to achieve this, as
shown later in this paper.
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Figure 2: Three sweeps (K = 3), denoted by different colors,
are performed over the input height field (left), their results
are written to axis-aligned output buffers (center), and fi-
nally accumulated in the result buffer (right).

4. Line processing

Visible points of the height field along a line are naturally
grouped into continuous parts. Such a part can only start at a
point in the convex section of the line: when viewed from the
receptor R, the point is a local maximum with neighbors that
are below it. Convex sections are separated from each other
by concave sections, and therefore the line can be split into
strictly alternating convex-concave sections. We call a pair
of convex-concave sections a segment, and use these seg-
ments to determine visibility along a line.

From now on we refer to a height field sample at step i
as point p;, denoting its height by /; and its distance from
the start of the line by d;. In this notation py is the first point
on the line and p; is the receptor R. When traversing a line,
each point p; is determined to belong to either a convex or a
concave section of the line by the following function:

convex  ifi=0o0r2h; > hi_1+hiq,
C(pi) =< concave ifi#0and 2h; < hi_y+hiq, (1)

C(pi—1) otherwise

Note that in case the three points p;_1, p;, and p;y| form-
ing a straight line the convexity status is inherited from the
previous point.

The visible segments can be found using local horizons
as demonstrated in Figure 3. The local horizons are lines-of-
sight formed between R and points p{" on the surface such
that each line-of-sight is locally tangent to the surface at pf
and does not intersect the surface between R and pf. The
line-of-sight between py and R is also a horizon if it does
not intersect the surface. There are as many local horizons as
there are visible segments along the line, and each horizon
lies on the convex part of a visible segment. The beginning of
the visibility is available as the endpoint of the horizon, p{" .
The end of the segment’s visibility generally lies between
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Figure 3: The local horizons formed between points pf and
R unambiguously describe visible segments (denoted at the
bottom) and the extent of their visibility (the surface in or-
ange) at the receptor R. Convex sections are dark and con-
cave light.

two surface points and its coordinate is not directly available
from the horizons. Instead, the next horizon (through pﬁl
and R) intersects the visible segment exactly at the end of
the visibility. The last visible segment includes R and does
not have a following horizon, in which case the visibility
reaches all the way to p,,_;. The least amount of information
required to describe the complete line visibility from R is an
array of the unsigned integer distance values d; of pf .

In order to iteratively derive the local horizons for each
R (pn) along the line without having to go over points
Po---Pn—1 €ach time, we track a convex hull for each seg-
ment, starting from the beginning of the segment (p;) and
ending in p, as demonstrated in Figure 4. The convex hulls

S S S3 Sa Ss

Figure 4: A set of convex hulls (1...5) are formed from the
convex sections of segments Sy ...Ss to the receptor R (pn)
at the far right.
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therefore are the groups of points ordered by their distance:

{psj,{j,{ic},n} €Sjand j <ic <nand

hs,jiv1) = hs }
ds;fir1) —ds,f )

hs, i) = hs,li—1)

)
ds, i) — ds,[i—1]

j=0o0r (C( pj) = convex and
C(pj—1) =concave and 0 < j < ”)

In other words, we defined the set of upper convex hulls that
start from the first point in each convex section and end in R.
The first convex section always starts from py.

Convex hulls are efficient in determining occlusion be-
tween a receiver that is included in the hull and geometry
behind the hull: points on the hull can have a direct line-of-
sight only to their neighbors and thus the highest occlusion
is cast by the point previous to the receiver in the hull. The
last point of each convex hull defined in Equation 2 is the re-
ceptor R, and the points second to last are pf. Therefore the
edges between the last two points of the hulls are the local
horizons for R. Duplicate horizons, however, emerge from
this definition: the convex hull of each invisible segment pro-
duces the same horizon as the convex hull of one visible seg-
ment. This is due to the possibility of convex hulls sharing
points close to R. In fact, the vast majority of the segments
are usually invisible.

To overcome this problem we maintain a convex hull tree
instead of maintaining a separate convex hull for each seg-
ment. Points included in the convex hull tree are the union
of points in the separate convex hulls as defined in Equation
2. Each separate convex hull is still existent as part of the
convex hull tree and we call such a part a convex hull path.
A path will start from p; (a leaf node of the tree) and end up
in R (the root node). The branches are ordered such that the
first child of a parent is the one farthest away from the parent
or—equivalently—having the highest height of the children.
There are no redundant points in the tree and the direct chil-
dren of the root node are exactly the points pf . Therefore,
when the convex hull tree is up-to-date, extracting the local
visibility horizons involves nothing more than going over the
children of the root node. Figure 5 demonstrates a convex
hull tree in a fractal terrain height field along one line.

When a new step along the line is taken, a new R is in-
troduced and becomes the new root of the tree. The core al-
gorithm for determining visibility using the convex hull tree
therefore adjusts the tree after the introduction of a new root
such that each convex hull path is valid (convex). This algo-
rithm is recursive in nature and described next.

5. Point processing in the convex hull tree

In this section we describe how a new point is added to the
present convex hull tree. The input of this phase is the next

Figure 5: A convex hull tree along one line during a sweep
on a fractal terrain. Green links are shared by multiple con-
vex hull paths.

height field point p, along the line being traversed. The point
is first added as the new root of the convex hull tree, making
the previous point p,_; (the old root) its only child. The tree
is then processed using a recursive algorithm until all paths
from the root to the leaves are convex. As the algorithm is
applied incrementally it can be assumed that the paths were
valid before the addition of the new root. Therefore, it is
enough to process paths only to the point where convexity
once again holds.

The algorithm is first invoked using the triplet (root’s
first child’s first child — root’s first child — root) as its
parameter. We are naming the elements of such a triplet
(childr — parenty — root). The last element of the triplet
will always be the root element of the tree, and childy the
first child of parentr. First, the algorithm checks whether
the vertices of the triplet are convex. If they are, no action
is needed and the call returns. If the convexity check fails,
then parentr needs to be removed from this path, causing
childr to be connected directly to root. The edge from root
to childy will be above the edge from root to parentr, and
therefore the correct position for childr, as a root’s child, is
before parentr. If childr was also the last child of parentr,
parenty gets orphaned and is removed. Otherwise the sec-
ond child of parentr takes the place of the first child. Af-
ter these changes it is necessary to proceed both one step
deeper and one step wider from childy in the tree. Figure 6
illustrates the described process.

When proceeding deeper, the previous childy becomes
the new parentr and the first child of childr becomes the
new childr. When stepping wider, parentr stays the same
and its (newly assigned) first child becomes the new childr.
The process continues recursively until the convexity checks
for each branch pass and the algorithm stops, at which point
all convex hull paths are valid. Algorithm 1 lists the pseu-
docode for the recursive function. After the convex hull tree
is valid again, the visibility information is available as root’s
direct children (as a linked list) as described in Section 4.

(© 2013 The Author(s)
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root

parentt

childr

before after

Figure 6: Triplet (childr — parenty — root) fails the
convexity check (left), causing childr to disconnect from
parenty and connect to rooty (right). Two new triplets are
then processed, shown in blue.

Algorithm 1 RecConvexity(childr, parentr, root)

if !convex(childt — parentT — root)
connect childr to root before parentt
if childt has a next sibling
first child of parentt <— next sibling of childt
// Step wider
RecConvexity(next sibling of childr, parentr, root)
else
delete parentt

if child has a first child
// Step deeper
RecConvexity(first child of childr, childr, root)

Finally, after the convexity has been established, we deter-
mine whether the previous step started a new segment. When
the beginning of a segment is detected, the segment’s first el-
ement is duplicated in the tree and set to be the last child of
the root. The duplicated elements form the leaf nodes of the
convex hull tree and are permanent throughout the line.

6. Complexity

In this section we observe the complexity of our convex hull
tree processing algorithm on a line of n steps. When sweep-
ing through an N x N height field, 1 < n < +/2N. Let m; de-
note the number of visible horizons and #; the number of iter-
ations of Algorithm 1 at step i,0 < i < n on the line. Then the
total number of horizons on a line is given by m = Z’;;Ol mj

and the total number of iterations by t = Z;;OI tj. We first
prove that our algorithm’s complexity is linear in the total
number of produced output horizons (¢ = O(m)), and then
analyze the complexity of the horizons.

The total number of horizons m on all points of a line of
length 7 is at least n. We distinguish between three types
of iterations of the algorithm and show that these are either
O(n) or O(m):

(© 2013 The Author(s)
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1. An iteration that fails the convexity check with a child
that does not have a next sibling results in the deletion of
the parent node. As there are at most n elements in the
tree, there can be at most # iterations of this type.

2. An iteration that passes the convexity check will return
without further invocations of the algorithm. Each itera-
tion of this type corresponds to exactly one visible hori-
zon formed by the parent node (directly connected to the
root). Also, no other iteration can produce the same hori-
zon because such an iteration would need to have the
same parent, and all such iterations would need to em-
anate from this iteration. Therefore the number of itera-
tions of this type will be exactly m.

3. The last iteration type is the one for which the convexity
check fails, but results in the child being detached from
its previous parent and connected to the root without the
parent being deleted. As the parent and its previous sib-
ling were directly connected to the root and formed con-
secutive horizons before this iteration, the iteration will
introduce a new horizon (formed by the child) between
the two. As this inevitably increases the number of hori-
zons, there can be at most m iterations of this type.

The total number of iterations ¢ is therefore at most 2m -+ n,
or, of complexity O(m).

Table 2 presents empirical results for the number of visi-
ble horizons and iterations of Algorithm 1 for height fields
shown in Figure 7. The figures are measured from sweeps in
256 directions (K = 256) and averaged for one height field
point and for one azimuthal direction. The height fields are
of size 10242 (N = 1024) and the naive method performs
484 iterations per point on average. Compared to this figure,
the number of iterations required to produce the visibility
information is reduced by two orders of magnitude.

Table 2: The average number of horizons m; and iterations
t; for one azimuthal direction at a given point (denoted by
mgq and tq, respectively).

Height field mg tq tq/naive
fractal terrain ~ 9.25 11.7 2.4 %

brick surface  3.06 4.80 0.99 %
sine grid 1.68 3.02 0.62%
blocks 255 376 078 %

As a visibility description, horizons are in all cases at
least as compact as a point-to-point description: if the vis-
ibility consisted of individual scattered points there would
be one horizon (that can be expressed by a single surface
coordinate) for each point. In practice it is common that the
visibility of each segment spans multiple consecutive points
for which only one horizon is required. This can be seen by
comparing Tables 1 and 2.

Determining visibility for a line of n samples using our
method has the worst-case complexity equal to that of the
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brick surface

fractal terrain

sine grid blocks

Figure 7: The four 1 024° height fields used as test data.

naive method defined in Section 1, O(n?). This happens, for
instance, in a bowl-shaped height field where every other
point is depressed. On the other hand, if the height field is
dome-shaped, the complexity is O(n). We measure practical
complexity by presenting iteration counts for various height
field examples and by measuring scaling in n.

In order to measure scaling, we differentiate between two
types of content scaling which most practical height fields
exhibit a combination of. First, we measure increasing de-
tail using fractal terrains: every time n is doubled, more res-
olution is added between the existing points using a uni-
form distribution with half the range. Second, we measure
increasing extent with a constant level of detail using ran-
dom data: when n increases, more height data is randomized
from a fixed finite height range. Figure 8 shows the average
number of iterations ¢ for a line of length n as a function
of n. We measure scaling by k in t = O(nk ). For the naive
method k = 2, and for linear scaling k = 1. As the axes are
logarithmic, we fit first-order polynomials to the graph (for
n > 512) and attain k from their slopes. Visibility of the frac-
tal terrains seem to exhibit a scaling of roughly 0(n1'65)
whereas the random data quickly settles to near-linear scal-
ing of O(nl‘m). The data suggests that the scaling in most
practical cases is well below the quadratic scaling of the
naive method.

s

We noticed that the average segment length in these two
height field examples is the same for all n, indicating that
the scaling is due to changes in the amount of visible hori-
zons, not due to changes in the average coverage of one hori-
zon. This means that the number of visible points as listed in
Table 1 would scale similarly, and the observed complexity
applies generally to visibility and not just to our visibility
description. An increase in detail could, however, also cause
an increase in segment lengths. This would be the case if
the sine grid shown in Figure 7 were to scale up without the
grid size changing (the number of sine “domes” staying the
same): every point would continue to have the same number
of visible segments but the number of points belonging to
them would increase. This type of increase in detail would

1G
100 M naive k=2
10M
M fractal k=1.65
1100k random k= 1.01
10k

m=n k=1
1k

100

S
4
16 32 64 128256512 1k 2k 4k 8k 16k
n

Figure 8: The number of required iterations t for a line of n
steps for fractal terrains and random data. The naive method
(in red) and linear scaling (in green) as references.

yield linear scaling in our algorithm, and demonstrates the
power of the compactness of our visibility description.

7. Implementation

As current hardware accelerated graphics libraries have a
fixed rasterization stage that does not allow writing lines
into a framebuffer, we have chosen to use GPGPU. We use
OpenGL 4 and CUDA 3 in our implementation, and in this
section use CUDA terminology. Notes on performance ap-
ply to the NVidia Fermi architecture [NVI0O9].

The high-level framework begins with the passing of the
source height field as a texture from OpenGL to CUDA. Vis-
ibility calculations are then performed in one kernel, one
thread mapping to one line in the height field. As many az-
imuthal directions are processed simultaneously as allowed
by the amount of available graphics memory. One output
buffer for each K is produced, of which 7/2 rotations are lin-
early accumulated in CUDA reducing the number of buffers
to a quarter. Once the resulting K /4 buffers have been passed
back to OpenGL as textures, they are sampled and additively
blended in a floating point frame buffer.

(© 2013 The Author(s)
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In the actual visibility algorithm we implement a node of
a convex hull tree by allocating the following:

i one half-precision (16 bit) float for the height A;
ii one 15+1 bit unsigned integer for the distance d; (also
index of self, i)
iii one 16 bit unsigned integer for the index of the first child
(null if a leaf)
iv one 16 bit unsigned integer for the index of the next sib-
ling

A node allocated this way fits into 8 bytes. Elements are
stored in global memory using indices that correspond to ele-
ment distances, with the exception of leaf nodes. Leaves are
stored using indices one smaller than their distance which
are known to be empty when the leaf is forked, and the 1 bit
flag is set to denote the offset.

The distance based allocation yields sparse arrays, but
according to our benchmarks produced better overall per-
formance than having separate distance and index data and
packing the elements densely. The optimal data layout de-
pends on the content of the height field and the target GPU
architecture due to memory coalescing and caching effi-
ciency. We found good overall performance from a quasi-
parallel allocation in which the same indices of 2 to 8 con-
secutive threads are sequentially laid out in memory. Using
the maximum amount of 48 kB of L1 cache on each mul-
tiprocessor for global memory accesses also produced the
best performance. A cacheless architecture would not bene-
fit from the temporal coherence of memory accesses and we
expect a fully parallel allocation to yield best results on such
GPUs.

To implement the recursion in Algorithm 1, we use a
stack stored in global memory. The quasi-parallel allocation
scheme used for the convex hull trees produced the best per-
formance for the stacks as well.

In Algorithm 1, when the convexity check fails and childr
is connected to root, it is necessary to adjust both parentr
and its previous sibling. However, as we use a single link-
age scheme in which each node has links to its next sibling
and to its first child only, we need to carry both the par-
ent and its previous sibling (called parent,rey from now on)
by pushing them onto the stack. The use of single linkage
also makes breadth-first traversal preferable for the follow-
ing reason: current childr will be the parentprey of the next
breadth iteration, however if depth is processed first and all
children of childy are connected to the root, then childr is
removed making the previous parentprey obsolete. Tracking
the changing of parentprey would require another stack.

An optimized implementation of Algorithm 1 is listed as
Algorithm 2. As established, each time the convexity check
fails childr is connected to the root causing changes to
linkage. With some state tracking (variables regression and
history) these changes can be postponed and consolidated to
the fail block (lines 32 — 38) by pushing extra entries onto
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Algorithm 2 OptimizedConvexity(root, inSafeZone)

Functions self(n), child(n), and next(n) return memory loca-
tions of node n, node n’s first child, and node n’s next sibling,
respectively. Function read(p) returns the node from memory
location p and write(n) stores node n to memory location
self(n). Operators are C style, and calls requiring memory
accesses are underlined.

preSet = true
regression = null

// { childy, parentt, parentyrey, history }
s = { child(child(root)), child(root), null, 1 }

while stack not empty Il preSet
if !preSet
s = stack.pop()
preSet = false

if self(s.parentt) == self(regression)
s.parenty = regression

if self(s.childt) &&
Iconvex(s.childt — s.parentt — root)
if Iself(s.parentprev)
child(root) = self(s.childT)

if !inSafeZone && (child(s.childy) Il
child(s.parentt) == self(s.childr))
stack.push(child(s.childt) ? read(child(s.childT))
: null, s.childr, s.parentprev, s.history >> 1)

if next(s.childr) Il next(s.parentr)
s.parentprev = s.childr
if next(s.parentprev)
s.childt = read(next(s.parentprey))
else
s.childt = null
s.parentt = next(s.parentt) ?
read(next(s.parent)) : null
s.history =2
preSet = true
else
// & is bitwise and, ™ is bitwise xor
if self(s.childT) && s.history & 2
child(s.parentt) = self(childT)
write(s.parentr)
if self(s.parentprev) && s.history ~ 1
next(s.parentprev) = self(s.parentr)
write(s.parentprev)
regression = s.parentprey
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the stack that have a null child. This also allows more effi-
cient hardware scheduling as threads do the expensive global
writes in one place instead of blocking the execution in sev-
eral places. As a result, reads were halved and writes were
cut down to about a tenth as compared to an algorithm that
uses single linkage and flushes changes to memory immedi-
ately. Also, as pushes onto the stack are large and stress the
memory system, the latest stack element (breadth traversal)
can be passed on in a register variable, cutting down stack
accesses to a quarter on average.

There are two cases when running the convexity algorithm
is unnecessary. The first is when the new sample forms the
new root and inherits the old root as its child without further
changing the tree. The second and more important case is
when the new sample replaces the old root without affecting
the rest of the tree. Without specially treating this case all
children of the old root are traversed, and, as their convex-
ity checks fail, their first children are also traversed, whose
convexity checks all pass. This is an expensive operation,
and depending on height field content, may occur frequently.
The first condition for the old root being straightforwardly
replaced is when all its children get connected to the new
root. This can be easily tested for by checking if the convex-
ity check for (the last child of the old root — the old root
— the new sample) fails, in which case all previous siblings
of childy also fail. The second condition is that there will
be no other changes to the children of the old root, which
is a little harder to test. Essentially it is necessary to know
whether the convexity checks on the first grandchildren of
the old root will pass with the new root as well.

We address these situations by maintaining a safe zone be-
tween two distance boundaries that enclose the current and
some future steps. Edges from the first grandchildren of the
root to their parents are then projected against the distance
boundaries. The line between the lowest intersection points
at the boundaries forms a conservative upper bound for the
safe zone, demonstrated in Figure 9. When the old root is
determined to be replaced by a new sample landing within
the safe zone, height and distance of the root can be safely
renewed by those of the new sample.

The expense of being able to handle this special case ef-
ficiently is the need to keep the safe zone up-to-date by it-
erating over the first grandchildren of the root whenever the
convex hull tree changes or the second boundary is stepped
over. Algorithm 3 describes the process of updating the safe
zone at boundaries b and b,. Although the performance im-
pact of this optimization depends on the height field content,
it was always beneficial in our benchmarks and improved the
performance on average by 50 %. As a minor optimization,
the safe zone information is used to limit the convexity algo-
rithm (line 19 of Algorithm 2) in cases where the root is not
being completely replaced and the convexity algorithm has
to be invoked, but no grandchildren are affected.

by by

Figure 9: The lowest
projected heights of
the second level hori-
zons on the bound-
aries by and by form
a zone where it is safe
to replace the root.

Algorithm 3 SafeZoneUpdate(root, b1, b2)

{blh,b2h} — 0

¢ + first child of root

do // Loop over root’s children

if exists gc < first child of ¢

// Project grandchild—child line on boundaries
bly, < min(bly, line(gc — c¢) at distance bly)
b2}, < min(b2y,, line(gc — c¢) at distance b2y)

while exists ¢ <— next sibling of ¢

8. Efficiency

In this section we discuss the efficiency of our implementa-
tion on an NVidia GTX 480 graphics card in order to give a
frame of reference to the previous and the following sec-
tions. The two aspects we focus on are the utilization of
computational resources and the efficiency of memory ac-
cesses. The naive method is highly efficient from both as-
pects: neighboring height field points undergo almost ex-
actly the same processing, allowing high utilization, while
requiring sampling on neighboring height field coordinates
at all times, allowing for optimal texture cache efficiency.

Concurrent threads in our algorithm, however, may per-
form significantly different amounts of computation per step.
In current GPU architectures this yields low SIMT utiliza-
tion as threads within a warp will have to wait until the
longest running thread is finished. Memory accessing in
our algorithm is not quite optimal either: elements of con-
vex hull trees are accessed in a pattern where concurrent
threads rarely access consecutive memory locations. Also,
one thread rarely accesses consecutive indices of its own
convex hull tree in a temporally local manner, but rather
switches from a branch to the next in subsequent iterations of
the algorithm. Therefore there is little immediate coherency
to be exploited for either efficient memory coalescing or
caching. Fortunately, however, the data set for one thread
in an N? height field is /2N x 8 bytes at most, significantly
less on average, and only a small portion of the tree is tra-
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versed at each iteration, making transparent caches useful
afterall.

To quantify the aspects of computational utilization and
memory access, we use seven separate metrics:

Utilization in convexity algorithm (Uc) measures the ra-
tio of active threads in a warp (that consists of 32 con-
secutive threads) during the while loop in Algorithm 2.
This measure reaches 100 % when all threads in a warp
execute the same number of iterations.

Utilization during safe zone update (Us) measures the ra-
tio of active threads in a warp during the safe zone up-
date which requires looping over the children of the root.
This measure reaches 100 % when all threads simultane-
ously decide to update the safe zone and do so in the same
number of iterations, e.g. have the same number of visible
horizons.

Instruction rate (ipc) measures the average number of in-
structions issued per clock cycle. A multiprocessor in the
GF100 architecture is able to issue at most 2 warp-wide
instructions per cycle.

L1 cache hit ratio (C; ;) measures the ratio of memory re-
quests that were satisfied by the L1 cache. This includes
accesses to both the convex hull trees and the stacks.

16 kB L1 cache hit ratio (C, i?k) measures the ratio of
memory requests that were satisfied by the L1 cache
when configured to 16 kB.

L2 cache hit ratio (C;;) measures the ratio of memory re-
quests that could not be satisfied by the L1 cache but were
satisfied by the L2 cache.

DRAM bandwidth (mem) measures the amount of bytes
per second read or written by the memory controller rela-
tive to the maximum throughput as measured by the band-
widthTest tool in NVIDIA GPU Computing SDK.

Data for the first two metrics are gathered internally by
our algorithm. Only the number of loop iterations is mea-
sured; the loss in utilization caused by divergence during if-
else branching is not included in the measurement. Of these
two metrics Uc is more important as the convexity algorithm
dominates the overall execution time. Data for the last five
metrics are extracted using NVIDIA Compute Visual Pro-
filer [NVI11]. Unless otherwise stated, the L1 cache is con-
figured to 48 kB.

There are four main configurables in our algorithm. Opti-
mal values for them depend on the height field content, but
as the values are currently not automatically adjusted at run-
time, we use the same values for all height fields. The con-
figurables and the values used are:

e Thread block size, 64

e The number of neighboring height field lines packed to-
gether in a thread block, 64

e The number of consecutive threads for which the same
indices in the convex hull tree are laid out sequentially in
memory, 4
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e The number of consecutive threads for which same in-
dices in the stack are laid out sequentially in memory, 8

In Figure 10 we observe the seven metrics for the four test
cases shown in Figure 7. We consider the algorithm efficient
when measured by ipc, however the utilization U¢ is rela-
tively low and has a high impact on the effective instruction
rate per thread. A work queueing approach might be able to
balance load and improve efficiency considerably, but is be-
yond the scope of our paper. Our algorithm is also memory
intensive, and caching plays an important role in overall per-
formance. An increase in the amount of L1 cache per thread
would further reduce the strain on the memory subsystem,
and would likely improve performance.

9. Performance

We measure our visibility calculation performance against
the naive method implemented as an OpenGL fragment pro-
gram. Table 3 lists the average time taken to perform a single
sweep on the test height fields. The performance of the naive
method does not depend on the height field content. Despite
the shortcomings in the efficient mapping of our algorithm
to current GPUs as discussed in Section 8, our method is still
significantly faster than the naive method in all test cases.

Table 3: The average sweep time for the naive and our
method, and relative speedup.

Height field Time
naive 21.2 ms

Speedup

fractal terrain  8.85 ms
brick surface 5.05 ms

sine grid 1.61 ms
blocks 0.52 ms
Figure 11 3.14 ms
Figure 12 0.59 ms

Choosing the number of azimuthal directions K is a bal-
ancing act between performance and approximation accu-
racy. In principle, to cover every single height field point for
each receiver point, O(N) directions need to be processed. A
lot fewer are usually adequate, but the appropriate value of K
depends on e.g. the geometric content, BRDF, and frequency
and intensity of the surface exit radiance. Different values of
K for the indirect lighting component are demonstrated on
a diffuse monochromatic surface under outdoor lighting in
Figure 14. Solving visibility with K = 32 over the varying
geometry in Figure 11 is achieved at 10 fps.

10. Discussion
10.1. Lighting

Although lighting methods that utilize the visibility infor-
mation produced by our visibility algorithm are future work,
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Figure 10: Efficiency measurements for four test height fields. From the left, the metrics are: utilization in convexity algorithm
(Uc), utilization during safe zone update (Us), instruction rate (ipc), L1 cache hit ratio (Cr1), 16 kB LI cache hit ratio (C i?k ),

L2 cache hit ratio (Cy3), and DRAM bandwidth (mem).

in this section we outline ways to utilize our visibility de-
scription and also demonstrate, through trivially gathering
the surface radiance, that also lighting within the lowered
complexity is possible.

The visibility horizons as produced by our method pro-
vide exact angular coordinates for both the beginning and
the end of a segment’s visibility. The Cartesian coordinate
is only available for the beginning. We suggest three ways
to utilize this type of visibility information, in an order of
increasing computational complexity:

1. As a line on the height field is traversed, record its accu-
mulated exit radiance in a way that allows sampling the
total segment radiance using the angular coordinates.

2. Record the accumulated exit radiance so that it can
be sampled using distance coordinates. To find the ex-
act Cartesian end coordinate of the visibiliy use any of
the various existing intersection search algorithms. Two
properties might prove useful: (i) there is exactly one in-
tersection point between the horizon line and the segment
and (ii) the behaviour of the derivative is known due to
the convexity/concavity requirements.

3. Traverse the visible points one at a time by starting from
each beginning coordinate and stepping towards the re-
ceiver point until below the next horizon (cf. Figure 3).
This allows sampling of only the visible points (plus the
partially visible at each horizon boundary). The visible
segments can be traversed in parallel.

The potentially visible height field points and their exit ra-
diance along the line have already been traversed when it is
time to determine incident radiance for a receptor. Therefore
we find promise in fast lighting methods that accumulate a
description of exit radiance per segment such that it can, ide-
ally, be sampled directly with the information available in
our visibility horizons (alternative 1).

We demonstrate a trivial use of the 3. (slowest) alterna-
tive by sampling through the exit radiance one point at a

time and computing the contribution on the receiver ana-
Iytically. While this method is slow compared to visibility
determination, it performs in the complexity of Table 1 and
Figure 8 while producing exact lighting. Figure 11 demon-
strates global lighting with one indirect bounce under direct
lighting of a single point light. The complete lighting per-
formed this way is faster than only finding the visible points
using the naive method.

Figure 11: Top: direct illumination from a point light source
on a 1024° height field. Bottom: an additional indirect light
bounce. Accurate illumination in 64 directions is achieved in
1.21 seconds per frame (19 ms per direction).

Figure 12 demonstrates global lighting (direct lighting
in a dim 256256 lighting environment plus one indirect
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bounce) with parts of the height field emitting light by them-
selves. In this case, we achieve pixel-perfect lighting with an
unbound extent at a per-direction rate higher than that of the
approximative method in [NS09]. Multiple indirect bounces
can be simulated by repeating the indirect lighting phase us-
ing the output of the previous iteration as the new surface
radiance.

Figure 12: A ] 024° height field with self-illuminating parts.
Hllumination in 256 directions achieved in 1.68 seconds per
frame (6.6 ms per direction,).

10.2. Error analysis

Errors in our method come from (i) sampling along each
line, and (ii) the discretization of the visibility search into K
azimuthal directions. All image-space methods suffer from
the first issue: geometry is visited at sampled points, which
generally are not the original height field points. Using heavy
supersampling along a line is considered to produce the
ground truth. The more identifiable approximation in our
method is the discretization into azimuthal directions. Vis-
ibility solved using a large value of K represents the ground
truth in this aspect.

In this section we analyze the error introduced by these
two issues as compared to the respective ground truths. As
the test case, we use a diffuse height field under outdoor
lighting, shown in Figure 13. The error is visualized in Fig-
ure 14 and average error plotted in Figure 15. Generally the
error in indirect illumination is amplified by high-frequency
details in geometry and glossiness of the surface.

Azimuthal undersampling results in banding that is espe-
cially apparent on flat regions of a height field, however less
visible on uneven regions. One might argue that our method
is imbalanced for determining visibility along each line ac-
curately while crudely undersampling azimuthally, however
quantitative analysis implies that accurate visibility determi-
nation is necessary even for a small number of azimuthal
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directions: Figure 15 shows that K = 16 introduces an error
that is much smaller than that coming from unit length sam-
pling (S = 1). Qualitatively though, banding can be the most
outstanding visual artefact and in the next section we discuss
a way to trade it for noise.

10.3. Future work

As future optimizations, it may be possible to trigger a sim-
plification of the convex hull tree for parts far away from
the receptor every few dozen steps. Also because the algo-
rithm has traversed the data of the line already, the simpli-
fication process can utilize the exit radiance and geometry
information along the line to estimate the impact of the sim-
plification in order to control the error in the resulting ap-
proximation. Any such simplification can also be performed
while processing height field samples for the first time. For
example, it might be a reasonable optimization to ignore fine
levels of roughness on otherwise flat surface regions and fa-
vor extrusions over depressions when determining exit ra-
diance from the simplified regions. Other, non-sweep based
methods, are unaware of the contents of a line before taking
the actual samples, and therefore cannot trivially apply said
data-aware optimizations.

Previous methods based on the naive method that perform
an independent visibility search for each receiver point can
randomize azimuthal directions per receiver, and therefore
trade banding for noise. Trading banding for noise is also
possible in our method: one can perform a sparse sweep in
each direction (process every n-th line) while simultaneously
increasing K. Afterwards, when gathering results for a point
in the result buffer, one accumulates lighting only from di-
rections that have a line that crosses the receiver point. Fur-
thermore, a line does not have to strictly cross the receiver,
but a configurable distance epsilon can be used to provide

w .L"*‘ ﬁ‘t *
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Figure 13: The height field used for error testing. The sur-
face exhibits diffuse reflection and is lit under outdoor light-

ing.
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Figure 14: The indirect illumination component from Figure 13 and the corresponding error (white = 0 %, black = 10 %)
against ground truth (right) for different levels of visibility supersampling (on red) and values of azimuthal directions (on blue).
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Figure 15: The average error e per pixel for different values
of azimuthal directions K and supersampling S. The axes are
logarithmic.

a way to trade noise for blur. Randomizing azimuthal direc-
tions in previous methods incurs a penalty of lowered texture
cache hit ratio, the impact of which can be significant. Our
method takes very few height field samples per receiver and
is not bottlenecked by sampling, making it practically im-
mune to this penalty.

When it comes to applications, height field methods have
proven useful in producing lighting effects in screen space.
The main approximations of depth buffer geometry are (i)
not counting geometry outside the visible frame buffer and
(ii) taking only the first (visible) depth layer into account. It
is possible to alleviate these limitations [BS09], and we ex-
pect our algorithm to prove useful in producing properly oc-
cluded global screen-space indirect illumination effects not

yet seen in interactive graphics. Thus an interesting avenue
of further research is to investigate the possibility of produc-
ing global scene lighting entirely in screen space, with light
sources rendered in HDR as part of the scene geometry.

11. Conclusion

Determining intervisibility on surfaces of objects is a prob-
lem that needs to be solved in various applications, including
global illumination systems in computer graphics. Unfortu-
nately, the problem is complex and its current solutions com-
putationally expensive. For height field geometry, the prob-
lem can be reduced from 2.5D to 1.5D domain by approxi-
mating visibility in discrete azimuthal directions. The most
compact way currently known to express intervisibility in
the 1.5D case are local visibility horizons.

In this paper we have presented a novel algorithm that de-
termines local visibility horizons using incremental convex
hull trees. Visibility from every height field point is deter-
mined to a number of azimuthal directions in time that is
linear in the number of output visibility horizons, making
the algorithm of optimal time complexity. We have showed
that the proportion of visibility to the whole height field is
low, giving our algorithm an advantage over the previous
methods. In practice, we achieve a reduction by two orders
of magnitude in the number of iterations required to pro-
duce the accurate visibility information. Our method is also
amenable for GPGPU implementations and we have demon-
strated that such an implementation can achieve significantly
better performance than previous work.
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