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Abstract

We present a new method suitable for general purpose graphics processing units to render self-shadows on dy-

namic height fields under dynamic light environments in real-time. Visibility for each point in the height field is

determined as the exact horizon for a set of azimuthal directions in time linear in height field size and the num-

ber of directions. The surface is shaded using the horizon information and a high-resolution light environment

extracted on-line from a high dynamic range cube map, allowing for detailed extended shadows. The desired

accuracy for any geometric content and lighting complexity can be matched by choosing a suitable number of

azimuthal directions. Our method is able to represent arbitrary features of both high- and low-frequency, unifying

hard and soft shadowing. We achieve 23 fps on 1024×1024 height fields with 64 azimuthal directions under a

256×64 environment lighting on an Nvidia GTX 280 GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Color, shading, shadowing, and texture

1. Introduction

Shadowing is a major contributor to photorealism in com-
puter graphics giving important cues about objects and their
environment. Without shadows it is often hard to perceive
the shapes of objects or their relative position and magni-
tude. Hard shadows communicate the exact shape while soft
shadows convey distance; a shadow softens gradually as the
distance from the caster increases. Without shadows also
light sources — their distribution, size, and intensity — be-
come ambiguous. For example, in the cathedral environment
of the first row in Figure 9, it can be seen from the shadows
that there are multiple small openings from which light en-
ters, while in Figure 10, the elevation and the size of the
orange light source can be inferred from the shadows.

In this article we provide a method for general self-
shadowing on height field geometry under complex light-
ing environments. The method takes a height map and an
environment light map as input, and produces a color map
describing output radiance of the height field. The surface is
assumed to exhibit Lambertian reflectance under direct light-
ing.

Height fields describe geometry by defining the elevation
of a plane as a function of N×N surface coordinates. This

allows the geometry to be stored into a scalar 2D texture, and
accessed efficiently using graphics hardware. The geometric
content of an N2 size height field can be represented by a
polygon mesh of 2(N−1)2 triangles. Our method represents
(infinitely distant) input lighting as a function of elevation
and azimuthal angles. This function can be computed online
from cube maps.

GPGPU (general-purpose computation on graphics pro-
cessing unit) technology allows a more flexible usage of
graphics hardware by providing direct access to computing
resources. The suitability of GPGPU for raster graphics is
discussed in [Lef07]. We have decided to use CUDA [Hal08]
and OpenGL for the implementation of our method.

As our primary contribution we present a new algorithm
which by utilizing coherency between adjacent samples in
the height field along an azimuthal direction is able to cal-
culate the horizon angles for all the points in any given di-
rection in an operation that has linear time complexity in the
height field size. The horizon angles are obtained losslessly,
i.e., every height field value is taken into consideration in
the given direction. Therefore the algorithm can accurately
shadow height fields of arbitrary geometric content: sharp
edges, thin and tall features, and high and low frequency de-
tails with a stable level of performance, implying scalability.
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We also present a robust analytically defined model for
direct lighting that utilizes the previously generated horizon
information. It requires a precalculation phase which is fast
and can be executed for every frame. The lighting evalu-
ation is performed for each height field point in each az-
imuthal direction, thus taking a time linear in the height field
size and in the number of azimuthal directions. The lighting
model is capable of capturing small point lights, area lights,
and arbitrary light environments with high precision. Input
lighting can be specified as HDR (high dynamic range) cube
maps, which can be rendered or animated on-the-fly. There
is also no need for separate representations for low and high
frequency light sources, nor has lighting environment com-
plexity any effect on performance. Figure 10 demonstrates
a high-resolution height field with shadowing accuracy not
previously achieved in real-time.

2. Related work

Height field self-visibility can be determined by the horizon
silhouette at each point in the field for a set of azimuthal di-
rections. Horizon mapping [Max88] utilizes this observation
to shadow bump-mapped surfaces, and it has also been used
to shadow static height fields in real-time [SC00]. Methods
which consider all points in the height field as occluders for
one receiver point — not only the ones lying in discrete az-
imuthal directions — also exist [Ste98], but they are unsuit-
able for real-time applications.

Recently, real-time methods for dynamic height fields
have been proposed [SN08] [NS09] as well. These meth-
ods generate the horizon information on-line by sampling
the height field in azimuthal directions for each point sep-
arately to find the dominant occluder. For a height field of
size N2, this is an O(N3) operation for one azimuthal direc-
tion if all height field points along the direction are consid-
ered for each receiver point. To diminish the sampling load,
multiple resolutions of the height field (a multi-resolution
height pyramid) are used to satisfy sampling at different dis-
tances from the receiver. This approximation is suitable for
producing soft shadows, but can not produce high-resolution
shadows that extend far from the caster. Our method ex-
tracts the exact horizon in lesser time complexity,O(N2), for
any given azimuthal direction, and therefore is able to cast
extended high-resolution shadows while retaining high per-
formance. [SN08] and [NS09] use low-order (4th) spherical
harmonics — that can be represented by only 16 coefficients
— to model input lighting and occlusion, which is suitable
for soft-shadowing but incapable of capturing sharp shadows
or complex light environments. We model input lighting as a
high-resolution environment, which may contain both high-
and low-frequency features.

Methods based on calculating ambient occlusion are
widely used to render soft-shadowing effects on objects
[Bun05] [KL05]. These methods usually approximate the
geometry surrounding the receiver to calculate the propor-

tion of the visible environment. A family of ambient oc-
clusion methods approximate occlusion in image or screen
space [BSD08] [DBS08] [Mit07] [SA07] [BS09] by treating
the depth buffer as a height field. As the geometry visible
in the depth buffer is a subset of the total affecting geome-
try, and samples far away from the receiver are unlikely to
represent continuous geometry, these methods can only cal-
culate a local approximation of the occlusion by sampling
near the receiver. Screen space ambient occlusion has also
been extended to render more complex lighting effects, such
as indirect illumination and directional lighting [RGS09].

Shadow mapping [Wil78] produces hard shadows from
objects by comparing receiver distance from the light and
viewer point of view. Although originally used to render
shadows from point lights, methods [HLHS03] exist for soft-
ening the shadows. These methods however require one pass
for each light, and become unsuitable for real-time appli-
cations under complex light environments. To render shad-
ows under light environments, [ADM∗08] decomposes a
cube environment map into multiple light sources, generates
shadow maps for each of these using a fast algorithm, and
fuses the results. While this is suitable for arbitrary polygon
meshes, our method achieves faster performance per amount
of geometry and higher resolution shadows for complex light
environments also extracted from cube maps, but is special-
ized to height field geometry.

Height field geometry is usually rendered using two types
of methods. Displacement mapping methods render the
height field as a grid of polygons whose z-components are
displaced according to their height value. Relief mapping
methods render usually only one quad for a surface, and use
iterative algorithms in fragment programs to find the first
intersection between the viewing ray and the height field.
Displacement mapping methods are sensitive to the amount
of geometry, whereas relief mapping methods are sensitive
to the output image size. A review of these methods is pre-
sented in [SKU08]. Relief mapping methods can also render
hard shadows by determining if a light source is occluded
by the height field by searching for an intersection between
the height field and the light source. In [Tat06] this is ex-
tended to produce approximate soft shadows for area lights.
Shadowing light environments using these methods would
require an occlusion search for each light, and without op-
timizations such as using a height pyramid this would have
worse performance than in [SN08].

3. Summary of core ideas

The problem setting of height field self-shadowing is as fol-
lows. We would like to know the horizon for each point in
the height field as a function of azimuthal direction, in or-
der to determine the amount of light coming from the envi-
ronment. One way to approximate this is to determine the
horizon for a set of discrete azimuthal (with respect to the
height field plane) directions. Therefore, for each point in
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the height field, and for each azimuthal direction from that
point, we need to find the point that occludes the horizon the
most. Intuitively, the problem can be thought of as standing
at each point in the height field, turning around 360 degrees,
and finding the edge of the sky. What makes this computa-
tionally challenging is the fact that the highest horizon can be
cast by any point in the azimuthal plane (the plane perpen-
dicular to the height field’s ground plane oriented towards
the azimuthal direction).

We present a solution to this problem by describing, in
Section 4, a method for traversing the height field in a way
that facilitates very efficient occluder extraction. The oc-
cluder extraction is described in detail in Section 5. What
is new in our approach is the linear-time algorithm that is
able to find the horizon both more accurately and an order of
magnitude faster than before. We demonstrate its efficiency
on present day GPGPUs.

We use CUDA terminology [NVI09b] for the different
types of memory and concepts such as threads and kernels.
The key idea in our method is to use threads to calculate
horizons for whole lines of height field points instead of cal-
culating them independently for each one. Each thread keeps
a robust representation of the height samples it has processed
so far along the line in a convex hull subset. This representa-
tion can be incrementally updated and used to extract hori-
zon angles in such a way that the total time complexity for
processing a line of n samples is O(n). There are no approx-
imations involved in determining the horizon angle except
those coming from the inherent precision of the data types
used. We are not aware of this method having been intro-
duced in a field outside computer graphics before.

A practical use for this horizon information is to calculate
the amount of incident light a point on the surface receives
from its environment. As the second part of our contribution,
in Section 6, we describe a model for direct environment
lighting that features unbounded accuracy and can therefore
capture the full detail of the generated self-shadowing in-
formation. The lighting model is derived from an analyti-
cal definition, first for uniform ambient light environments.
We then extend the concept to precalculate arbitrary environ-
ment lighting into a 2D table that can be indexed by normal
and horizon angles during evaluation. The table represents
accumulated incident light weighed by the angle of the sur-
face normal’s projection to the azimuthal plane, and limited
by the horizon angle. The final lighting can then be accu-
rately evaluated by multiplying a sample from this table by
the length of the projected normal. The precalculation phase
is fast and accepts cube maps as input.

We finish the paper by presenting results of performance,
scalability, and shadowing accuracy. We are able to extract
occluders for dynamic high-resolution height fields, and uti-
lize this information to light the surface from dynamic high-
resolution environment light maps in real-time.

4. Computation framework

Graphics APIs offer programmability of the hardware by al-
lowing the application to supply its own programs for spe-
cific stages of the rendering pipeline. Because rasterisation
is not currently exposed to the application, a fragment pro-
gram can output only one value to each output buffer into
a predefined position. Our method relies on each calcula-
tion outputting a series of values into different positions in
the output buffer, and is therefore an unsuitable candidate
for a fragment program. This is the main reason we decided
to implement our algorithm using GPGPU technology. In
this chapter we describe the rasterisation used and its thread
topology.

A height field describes a 2-dimensional surface in 3 di-
mensions, (x,y,h(x,y)), where h is given at discrete coor-
dinates, i.e. as a height map. By describing the surface this
way, the geometry along a straight line in the (x,y) plane can
be traversed by sampling the height function at correspond-
ing points. To sample the height function, we use bi-linear
filtering [NVI09b] provided by graphics hardware.

We determine the occlusion as the horizon angle from
zenith at each height field point in discrete azimuthal di-
rections. The horizon is determined by another point in the
azimuthal direction whose height-to-distance ratio (slope) is
the highest as measured from the receiver point. Instead of
extracting horizon angles independently for each height field
point the height field is marched along the azimuthal direc-
tions in parallel lines (Figure 2). An unfinished occlusion
sweep for one azimuthal direction is shown in Figure 3.

For a height field of size N×N and for one azimuthal di-
rection, between N and

√
2N lines are processed, one thread

for each line. A thread steps through 1 . . .
√
2N height sam-

ples along its path, so that a total of N2 evenly spaced sam-
ples are processed for the direction, covering the height field.
Each thread is responsible for keeping a representation of the
geometry along the path up to the latest sample. From this
data, the thread decides for each new height sample a hori-
zon angle backwards along its path, as illustrated in Figure
1.

Figure 1: Each thread supplies a horizon value from its in-

ternal representation of the height function for each height

sample in its path.

As it is critical for the performance of current graph-
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ics hardware to coalesce writes into larger transactions
[NVI09b], the output values are written to a buffer in such
a way that threads are axis-aligned and write into consecu-
tive memory locations, as demonstrated in Figure 2. For an
N×N source height field, output buffers are

√
2N×

√
2N

in size, and they have to be rotated back when fusing the
results.

Figure 2: For each azimuthal direction, N . . .
√
2N threads

step through 1 . . .
√
2N samples to cover a height field of res-

olution N2 and write the results to an aligned output buffer.

Figure 3: Parallel threads have extracted the horizon angles

for roughly half of their path during one azimuthal sweep.

The full result is in Figure 5.

5. Occlusion extraction

The purpose of the occlusion extraction stage is to extract
horizon angles for height samples efficiently and correctly.
This process is done in threads that map to lines in the height
field. A thread steps along the line one height sample at a
time, calculates the horizon angle for each consecutive sam-
ple, and writes the results to consecutive lines in the output
buffer. The threads keep a robust representation of the height
function along the line in memory from which the dominant
occluder is deduced. Each new sample is a potential occluder

for future samples and is therefore always initially included
in this representation.

The dominant occluder for an arbitrary new sample is one
from the convex hull subset of previous samples. Moreover,
elements of the convex hull can have a direct line of sight
only to neighboring elements. Therefore, when the new sam-
ple is made part of the convex hull set, its horizon angle can
be deduced directly from the previous element, as illustrated
in Figure 4.

Figure 4: The horizon angle for a sample is determined by

the previous occluder in the convex hull set marked by •.

We can also state this formally. When sorted by distance,
the convex hull set can be defined as

hn−hn+i

dn−dn+i
≥ hm−hm+ j

dm−dm+ j
, (1)

n≤ m

n+ i≤ m+ j

where for occluder of index k, hk is its height and dk its
distance along the line. From this definition we obtain the
largest occlusion for an element of index n as

max
i∈[1,n]

(

hn−i−hn

dn−i−dn

)

=
hn−1−hn

dn−1−dn
(2)

In computational geometry, algorithms for the efficient
construction of convex hulls have been studied in [Gra72]
and [Mel87]. We can exploit the incremental nature of our
method and the structure of the height field geometry to
construct a simple linear-time algorithm to process a line of
height samples.

For simplicity we implement the convex hull set here as
a stack. To retain a valid convex hull when incrementally
adding occluders, the stack has to be popped until Equation
1 holds for the last and the new element. Therefore adding
a new element while retaining convexity, and finding the oc-
cluder casting the smallest horizon angle on the new element
are achieved with the same operation. A pseudo code algo-
rithm of this operation is shown in Algorithm 1.
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Algorithm 1 Processing a new height map sample new

v1← VECTOR(peek1→ new)
while size > 1 do

v2← VECTOR(peek2→ new)
if h(v2)d(v1)≥ h(v1)d(v2) then

v1← v2
pop

else

break

end if

end while

push(new)

return π
2 − tan−1 h(v1)

d(v1)

Pop and push are standard stack operations, peek1 returns
the last element without modifying the stack, and peek2 re-
turns the second to last. The inverse tangent can be effi-
ciently calculated using [Has53] as introduced in [SN08],
which requires only one floating point division and two com-
putationally light branches.

For a thread processing N elements, there will be exactly
N pushes on the stack and less than N pops. One iteration
performs n+1 comparison operations for n pops, and there-
fore the total number of comparisons for an entire thread is
at most 2N, yielding a total time complexity of O(N). This
property of the algorithm gives it its desired performance
charasteristics. Another desired feature of the algorithm is
that it does not skip, or use an approximation for, even dis-
tant occluders, and can return horizon angles in the full range
of 0 . . .π.

6. Lighting

As it is possible to extract high-resolution horizon maps us-
ing the algorithms described in Sections 4 and 5, it is useful
to have a scalable lighting model capable of representing the
full resolution. As our second contribution we first present
incident lighting in an analytical form, and then show how it
can be efficiently calculated in real-time for uniform ambient
lighting and for arbitrary light environments.

We first recapitulate the rendering equation [Kaj86] in
this context. We assume the surfaces to exhibit Lambertian
reflectance and to emit no radiance. While our method is
not restricted to Lambertian surfaces, its suitability for other
BRDFs would warrant a separate investigation and is beyond
the scope of this paper. Lighting calculations are performed
in the coordinate system of the height field plane, where the
equation for output radiance becomes

Lo(Li,o,~N,x) =
1
π

Z

Ω
Li(~e)o(x,~e)(~N ·~e)d~e, (3)

~N ·~e≥ 0

The integral extends over the hemisphere around the point

x with the normal ~N. Li is the input radiance as a function of
direction~e, and o is a binary visibility term as a function of
the point x and direction~e.

If the integral is discretized into n equally sized azimuthal
swaths, it can be expressed as

Lo(Li,o
′
,~N,x) =

1
π

n−1

∑
k=0

Z

π
n
(2k+1)

π
n
(2k−1)

Z θk

0
Li(~e)(~N ·~e)sinθdθdφ,

θk = min

(

o
′(x,k), tan−1

(

~Nxcos(
π
n 2k)+~Nysin(

π
n 2k)

~Nz

))

(4)

The angle θk is the horizon angle o
′(x,k) from zenith for the

azimuthal direction k at x clamped to satisfy ~N ·~e ≥ 0. The
clamping is evaluated at φ = π

n 2k.

6.1. Uniform ambient lighting

Solving the integrals in Equation 4 with ~e expressed in
spherical coordinates and assuming constant input lighting
(Li = c) gives

Lo(o
′
,~N,x) = c

~Nz

n

n−1

∑
k=0

sin
2θk + c

sin( π
n )

π

n−1

∑
k=0

(5)

((

θk−
1
2
sin(2θk)

)

(

~Nxcos
(π

n
2k
)

+~Nysin
(π

n
2k
))

)

As cos
(

π
n 2k
)

and sin
(

π
n 2k
)

remain constant for one az-
imuthal direction throughout the height field, only sin2θk
and sin(2θk) will have to be calculated for each height field
point. Also, if the inverse tangent in Algorithm 1 is calcu-
lated after clamping the slope by the normal, Equations 4
and 5 can be evaluated with three floating point divisions and
less than ten multiplications and additions. Figure 5 features
uniform lighting.

Figure 5: A 10242 height field under uniform ambient light-

ing (φN = 64, 24 fps)
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6.2. Arbitrary light environments

To represent arbitrary, infinitely distant, light environments
we can precalculate lighting for each azimuthal direction for
a specific Li as a function of ~N and o′(x,k).

If ~N is decomposed into two orthogonal components, one
perpendicular to~e, the remaining component ~Np is the only
contributor to the dot product ~N ·~e. Furthermore, the length
of the component can be dissociated from the precalcu-
lated light function Lp, allowing an efficient definition of
Lkp(θn,θh) as a function of the normal angle θn and the hori-
zon angle θh towards the azimuthal direction k, as illustrated
in Figure 6.

Figure 6: When the normal ~N is projected onto the az-

imuthal plane, lighting can be tabulated as a function of the

horizon angle θh and the angle θn for the projected normal.

The lighting evaluation becomes

Lo(Lp,o
′
,~N,x) =

n−1

∑
k=0

(

|~Np|Lkp
(

θkn,o
′(x,k)

))

(6)

Precalculation of Lp for direction k becomes

L
k
p(θn,θh) =

1
π

Z

π
n
(2k+1)

π
n
(2k−1)

Z min(θn+
π
2 ,θh)

0
(7)

Li(θ,φ)sinθcos(θ−θn)dθdφ

If the same environment map sample for a specific θ is used
throughout one k, i.e. Li(θ,φ) = Li(θ,k), Equation 5 can be
incrementally used to compute Lp in a separate pass.

As for the resolutions of θn and θh in Lp, the horizon angle
θh directly defines the resolution of the light environment in
conjunction with the azimuthal direction count φN . The res-
olution of θn on the other hand should be selected to be as
low as possible while retaining an acceptable level of error
in the result. The resolution only affects the weighing of the
environment samples and the cutoff horizon angle induced
by ~N ·~e ≥ 0. Also, the results from consecutive normal an-
gles can be linearly interpolated during the sampling of Lp.

Figure 7 shows different normal angle resolutions and the
corresponding error. A resolution as low as 8 usually pro-
duces results indistinguishable to the naked eye from higher
resolutions, and a resolution of 16 is a safe choice without

losing much of the benefit offered by texture caching. We
actually use uneven resolutions (7, 15, 31. . . ) in order to pro-
duce exact results for normals that point directly upwards
(0,0,1).

Figure 7: Error introduced by lowering the normal angle

resolution from a reference 256 to 16 (middle) and 8 (right)

on a height field shown to the left, multiplied by 50. The av-

erage and maximum errors for resolution 8 are 0.16% and

1.66%, and for resolution 16 0.03% and 0.42% respectively.

Figure 8 demonstrates the ability of this light model to
represent both point and area light sources.

7. Implementation

Our implementation runs entirely on the GPU and is based
on OpenGL 3 and CUDA 2. Various implementational al-
ternatives were tested and the ones described here produced
the best results in our environment. The APIs and the perfor-
mance characteristics of their implementations are subject to
change.

The algorithm input consists of one or two OpenGL side
PBOs (pixel buffer objects): a floating point height map and
(if environment lighting is used) a floating point RGB cube
map. The output is either a monochromatic or an RGB (for
environment lighting) floating point OpenGL texture. The
entire pipeline uses HDR (high dynamic range) values.

The algorithm can be broken down into the following
stages that are executed for each frame.

Preprocessing

The source height field and the environment cube light map
are passed as 32 bit floating point OpenGL PBOs to CUDA,
and further copied to CUDA arrays for bi-linearly filtered
sampling. Surface normals are created from the height data
by summing unnormalized normals from each of the four
quads connected to the height sample. Not normalizing the
quadrants produces less artifacts on very sharp edges. After
the summing, the normals are normalized and stored as per-
component 8 bit fixed points, and bi-linearly filtered during
sampling. Lp is generated as described in Section 6 using 32
bit floating point color components. The resulting light table
is bi-linearly filtered during sampling.

Occlusion extraction

The height field is swept through for each azimuthal direc-
tion as described in Section 4. Occluders are stored in lo-
cal memory (off-chip) in preallocated arrays that are large
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Figure 8: Differently sized circular light sources with corresponding lighting cube maps on the top. (θN = 256,φN = 128)

enough for no overflow to occur using half precision (16 bit)
floats for their height and unsigned fixed point (16 bit) for
their distance, fitting an occluder into 32 bits. Threads write
32 bits of data to the output buffer every fourth iteration con-
sisting of four 8 bit unsigned fixed point horizon angle val-
ues. When uniform ambient lighting is used, light values are
computed directly instead.

Packing and lighting

Before passing the data for final blending to OpenGL, four
(φ, φ + π

2 , φ + π, and φ + 3π
2 ) azimuthal directions are lin-

early combined for reduced overhead during PBO passing
between OpenGL and CUDA. As the horizon data is 8 bit
and threads process 32 bit elements for optimal efficiency,
shared memory communication between threads is required.
Communication is also required for efficient texture trans-
posing. If environment lighting is used the lighting calcula-
tion is also carried out in this stage for reduced computation.
The reduction is made possible by sharing one normal for the
four azimuthal directions, producing sampling coordinates
for Lp with less operations. The resulting lighting is stored
using OpenGL compatible 10+11+11 bit floating point BGR
components.

Fusing of intermediate results

The previously generated intermediate results are indepen-
dent and can be fetched in multiple passes if video memory
reservation is an issue. The intermediate results are copied
into textures which are rotated and blended in a 32+32+32
bit floating point RGB frame buffer to produce the final re-
sult in OpenGL.

When constructing the thread blocks for occlusion ex-
traction, at least two aspects should be considered. Firstly,
the heads of the threads should be aligned to form groups
that write consecutive memory addresses (share a common
first row in the output buffer) to allow write coalescing. Sec-
ondly, the threads within the whole thread block should have
similar spans for maximum utilization of the SIMT (single-
instruction multiple-thread) hardware. Processing multiple
azimuthal directions in one kernel invocation increases the
amount of available threads with similar spans. However,
packing threads of equal span will interfere with write co-
alescing, since threads with exactly the same span are bound
to be either at the other end of the texture, or belong to a

different direction. As the amount of threads necessary for
efficient memory coalescing is lower than the optimal size
of a thread block, these two goals are not mutually exclu-
sive.

Although having similar spans, adjacent threads may still
not execute each iteration of Algorithm 1 synchronously due
to different occluder stack contents. Furthermore, when the
occluder stacks are of different sizes during runtime, mem-
ory coalescing cannot occur. Fortunately, the last two oc-
cluders in the stack can be stored as separate variables (in
registers) saving two memory accesses that would otherwise
be required in each iteration (when size > 1), diminishing
the memory coalescing problem and improving the overall
performance.

In order to estimate the memory consumption of the oc-
cluder stacks we note that the maximum size that a con-
vex hull may have in a N ×N height field is

√
2N (e.g. a

half sphere extending from corner to corner of the height
field). Preallocating arrays according to this observation
would yield an occluder storage equal to the output buffer
(
√
2N×

√
2N elements) in size. In practice, however, CUDA

runtime only has to allocate space for threads that are sched-
uled to run, which is typically less than the total number of
threads. Also, most height fields require convex hulls of only
fraction of the maximum size. For instance, the actual con-
vex hull sizes in Figure 9 peaked at 3% of the theoretical
maximum (43 elements). According to our benchmarks, the
size of the occluder arrays has a negligible effect on perfor-
mance, excluding that coming indirectly from memory con-
sumption (e.g. by affecting the number of passes required).

8. Results

The performance of our algorithm is directly related to the
height field size and to the number of azimuthal directions,
but is rather insensitive to geometric content. As the exact
horizon is extracted for each height field point for all az-
imuthal directions, there are no other tunable parameters in-
volved which trade the accuracy of visibility calculations for
speed.

Figure 9 illustrates the effect of azimuthal direction count
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Table 1: Performance measurements

HF res.
FPS for uniform, environment lighting

φN = 16 32 64 128 256
Nvidia GTX 280 (1 GB)

5122 160, 114 118, 87 74, 61 44, 38 24, 22
10242 76, 62 45, 39 24, 23 12, 12 6.4, 6.3
20482 24, 24 13, 13 6.6, 6.7 3.4, 3.4 1.7, 1.7
40962 5.4, 6.8 2.8, 3.5 1.4, 1.8 0.7, 0.9 0.4, 0.5

Nvidia 8800 GTS (512 MB)

5122 110, 108 62, 68 33, 38 17, 20 8.6, 10
10242 33, 38 17, 21 8.8, 11 4.4, 5.5 2.2, 2.8
20482 8.8, 10 4.6, 5.4 2.3, 2.8 1.2, 1.4 0.6, 0.7

Table 2: Execution time distribution

Stage
Proportion

φN = 16 128
Env. lighting

Normals and light precalculation 15% 3%
Occluder extraction 38% 46%
Packing and lighting 20% 32%
OpenGL (incl. CUDA interop.) 27% 19%

Uniform
Normals 9% 1%
Occluder extraction and lighting 65% 76%
Packing 8% 11%
OpenGL (incl. CUDA interop.) 18% 12%

on the quality of rendering. Banding artefacts due to az-
imuthal undersampling might appear when a low number of
directions is used. Uneven complex geometry helps to hide
banding, but a height field with sharp edges and planarity
might require up to 128 azimuthal directions before very
good results are obtained. Currently, the suitable number of
azimuthal directions has to be selected manually.

Table 1 lists frame rates for combinations of height field
resolutions and azimuthal directions. Height field content is
shown in Figure 9 and the environment lighting resolutions
are 256 (θN ) times the number of azimuthal directions (φN ).
All stages listed in Section 7 were included for each frame.
Table 2 shows typical execution time distributions between
the different stages. A 10242 height field (Figure 9) was used
for the tests, and the data was gathered using CUDA Profiler
[NVI09a]. The execution stages do not overlap in time.

The precalculation of normal vectors and the light func-
tion for environment lighting execute in approximately con-
stant time for any number of azimuthal directions and any
height field size, and therefore consume a larger portion of
the execution time when the number of azimuthal directions
is low. It is also worth noting that these precalculation ker-
nels take significantly longer CPU time than GPU time, in-
dicating relatively high overhead in data copying and kernel

invocation. Also, binding OpenGL PBO resources in CUDA
has some overhead — included in the OpenGL phase —
that grows proportionally larger with a lower number of az-
imuthal directions.

As occluder extraction is a problem that has many uses —
and even in this context can be used with other lighting meth-
ods — observing its performance independently can be use-
ful. Extracting only the horizon angles for one azimuthal di-
rection on each point of a 10242 height field is accomplished
in 0.30 ms (>3300 Hz), when measured using φN = 128.

Figure 10: A fractal terrain of size 20482 (8M triangles) lit

by a single 256×16 environment at 20 Hz.

9. Conclusions

We have presented a new real-time method to render self-
shadows on dynamic height fields under dynamic light en-
vironments. Its computation is parallel and suitable for cur-
rent GPGPUs. Our method determines visibility as the ex-
act horizon in a set of azimuthal directions in time linear in
height field size. This allows scaling to large height fields
with arbitrary geometric content. We also presented a light-
ing model capable of representing complex high-resolution
light environments extracted on-line from HDR cube maps,
allowing for accurate real-time direct lighting of height
fields. Our method is faster and more general than previous
methods.

Our method could also be used to calculate ambient
occlusion or direct lighting in offline rendered graphics
which require greater accuracy and scaling. For example,
a 4096×4096 height field (34M triangles) can be lit from
1024 azimuthal directions in 8 seconds, its computation fit-
ting into the video memory of commodity graphics cards,
and the result being comparable to exhaustive ray-tracing.
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Figure 9: Increasing azimuthal directions yields smoother results, but its effect depends on the geometric content. On the left

are two light environments [Deb98] upon the 10242 height field, θN = 256, and the number of azimuthal directions with the

corresponding frame rates from left to right are: 16 (62 Hz), 32 (39 Hz), 64 (23 Hz), 128 (12 Hz), and 256 (6.3 Hz).
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