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3 - Core concept
4 - Slightly different computation scheme, not doable w/ current shaders
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1  PROBLEM DESCRIPTION

Height field geometry

Specific geometry.  A representation of a height field on the right, displaced surface in the 
back.
Elevation of a surface is defined as a function (HF) of discrete surface coordinates.
HFs can be used to e.g. introduce microgeometry to crude polygon models or to represent 
complete objects by themselves
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Direct lighting of height field geometry from 
an infinitely distant arbitrary light source...

...consists of integrating 
the input light over the 

sky’s visibility

Sky’s visibility <=> surface self-occlusion
Integration over visibility: incoming color * dot(incoming light vector, normal)



1  PROBLEM DESCRIPTION

The two core problems:

1  Integral bounds: visibility of the sky
(Primary contribution, focus of this presentation)

2  Integration of incident light over visibility
(Secondary contribution)

Problem splits down into 2 subproblems.  We offer contributions to both but focus on 1
1 Limits of the sky from the perspective of each point in the height field
2 This phase is lighting
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The real challenge is finding the integral bounds

Find horizon as a function 
of azim. direction for each 

point in the HF

Naïvely O(N3) 
for one direction
on an NxN HF

We can solve the visibility by finding the horizon in discrete directions
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Sophisticated interpolation between different resolutions

When sampling farther from the receiver, use lower resolution height field
This also uses 4th order SH for lighting, only suitable for soft shadows.
(We use an accurate lighting model)



2  PREVIOUS APPROACHES
Screen space ambient occlusion:
local sampling and artefact hiding

Depth buffer is used as the height field
Occluders are searched locally, as distant samples are unlikely to represent continuous 
geometry
Randomized sampling directions to trade banding for noise.  E.g. bilateral blur for hiding 
noise 



2  PREVIOUS APPROACHES

Room for improvement:  fragments on 
a line undergo redundant processing

If you consider processing points along one line, each go through same samples.  This is 
redundant processing, at the very least redundant sampling.  Our method is based on this 
premise
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We can traverse through the height field 
in lines, instead of independent points

Idea is to process whole lines, so that we can utilize whatever coherency there is in 
processing adjacent samples on a line
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When marching along 
the line, previous height 
values are remembered

Horizon values are 
extracted from this 

internal representation

We march one step at a time, and use an internal representation of the height function so far
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Maintain a convex hull 
subset of all samples so far, 
and the horizon angle for 

each new sample is 
determined by the previous 

value in the subset

Now this is important: 
If we consider the convex hull subset of all samples, including the new sample, the horizon 
angle for the new sample cannot be determined by any other sample than one of the convex 
hull subset.  Furthermore, each element in the set can have a direct line of sight only to its 
neighbors, so the horizon angle backwards is determined by the previous element in the set
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All we need to do when processing 
the next sample is to add it to the 
subset while retaining convexity

In this case for example, the previous elements in the set (marked in red), are to be removed
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Store the convex hull subset in a stack, pop it until the 
2 topmost values and the new sample are convex

1st iteration fail     pop

2nd iteration fail     pop

3rd iteration pass      push(new)

Each time you add a sample, you pop the stack until the tail is convex
You can check the convexity easily by comparing vector slopes



3  OUR APPROACH
A line of N samples:

N pushes to the stack

<N pops (one iter. each)

N iterations without a pop

At most 2N iterations total

Computational complexity is O(N)

The algorithm is also very compact and fast to execute on GPUs
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Processing along parallel lines
Not a suitable candidate for a fragment program

We process lines, not pixels as with fragment programs, so we need to write multiple 
locations across an output buffer from a thread.
Scatter writing not possible with fragment shaders
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Calls for GPGPU, we use CUDA
Memory coalescing still possible
Enough threads to utilize a GPU

However, this still maps efficiently to graphics hardware.  
(1) We can still utilize memory coalescing by writing results to an aligned output buffer (GPU 
mem. ctrller only requires 1D write patterns)
(2) We can have enough threads to utilize a GPU, especially when we process multiple 
directions at once (89k threads for 1024*1024 HF w/ 64 dirs) -- trivially parallelized
We can build thread blocks so that thread spans don’t differ that much but memory 
coalescing is still possible



4  COMPUTATION FRAMEWORK

OpenGL PBO to CUDA Array

One sweep for each direction 
(in this example 0°, 30°, 60° ... 330°)

90° rotations are linearly combined for 
reduced overhead in OGL interop.

Resulting textures are blended in OpenGL

As many sweeps (each generating horizon angles for one direction) as possible is performed 
at once, limited by how much VRAM can be used
During combining, also lighting is calculated, but not included in this presentation
There’s expensive overhead in current OGL interop (APIs & their implementations rapidly 
changing, though) so we combine some textures already in CUDA. The whole pipeline uses 
HDR values
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Time complexity reduction from O(N3) to O(N2) 

38 Hz
Our method

No geometry approximations
Soft and hard shadows

2.5 Hz
Snyder et al. 10242 HF, 16 azim. dirs

To the left is the previous state-of-the-art from Snyder et al.
This is 1024^2 height field shadowed for 16 azimuthal directions on an G80 card (same card 
for both)
We are able to do both soft and hard shadows, because we don’t approximate geometry (and 
use an accurate lighting model).  And we’re faster too, even more so when HF size, lighting 
resolution and azim. dir. count grows.
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Here you can see this method’s ability to handle both hard and soft shadows
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Choosing the number of azimuthal directions...

HDR cube map lighting environments on the left, 1024^2 height maps on the right
Let’s see how azimuthal directions affect
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16 32 64

Choosing the number of azimuthal directions...

Here you can see the effect of the number of azimuthal directions.  For worst cases, even 128 
might be required to acquire smoothness.  Then again, 16 might be enough for complex 
geometry where shadows don’t produce that visible boundaries



5  RESULTS
Performance figures

It’s pretty much linear in height field size and the number of azimuthal directions
For example 1024^2 with 64 directions is 23 fps.  Rather insensitive to geometric content.
If you’re interested in some very high definition for e.g. offline graphics, you can do 
4096x4096 height fields (34M polygons) with 1024 directions in 8 secs a frame
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QUESTIONS?


