
SCALABLE HEIGHT FIELD
SELF-SHADOWING

Ville Timonen1,2

Jan Westerholm1

1Åbo Akademi University
2Turku Center for Computer Science

Eurographics Conference 2010
FP16 Rendering II

PRESENTER NOTES

CONTENTS

1
2
3
4
5

6
7

Problem description
Previous approaches
Our approach: incremental convex hulls
Computation framework
Results

Video demonstration
Questions?

3 - Core concept
4 - Slightly different computation scheme, not doable w/ current shaders

1 PROBLEM DESCRIPTION

1 PROBLEM DESCRIPTION

Height field geometry

Specific geometry. A representation of a height field on the right, displaced surface in the
back.
Elevation of a surface is defined as a function (HF) of discrete surface coordinates.
HFs can be used to e.g. introduce microgeometry to crude polygon models or to represent
complete objects by themselves

1 PROBLEM DESCRIPTION

Direct lighting of height field geometry from
an infinitely distant arbitrary light source...

...consists of integrating
the input light over the

sky’s visibility

Sky’s visibility <=> surface self-occlusion
Integration over visibility: incoming color * dot(incoming light vector, normal)

1 PROBLEM DESCRIPTION

The two core problems:

1 Integral bounds: visibility of the sky
(Primary contribution, focus of this presentation)

2 Integration of incident light over visibility
(Secondary contribution)

Problem splits down into 2 subproblems. We offer contributions to both but focus on 1
1 Limits of the sky from the perspective of each point in the height field
2 This phase is lighting

1 PROBLEM DESCRIPTION

The real challenge is finding the integral bounds

Find horizon as a function
of azim. direction for each

point in the HF

Naïvely O(N3)
for one direction
on an NxN HF

We can solve the visibility by finding the horizon in discrete directions

2 PREVIOUS APPROACHES

2 PREVIOUS APPROACHES
Sophisticated interpolation between different resolutions

When sampling farther from the receiver, use lower resolution height field
This also uses 4th order SH for lighting, only suitable for soft shadows.
(We use an accurate lighting model)

2 PREVIOUS APPROACHES
Screen space ambient occlusion:
local sampling and artefact hiding

Depth buffer is used as the height field
Occluders are searched locally, as distant samples are unlikely to represent continuous
geometry
Randomized sampling directions to trade banding for noise. E.g. bilateral blur for hiding
noise

2 PREVIOUS APPROACHES

Room for improvement: fragments on
a line undergo redundant processing

If you consider processing points along one line, each go through same samples. This is
redundant processing, at the very least redundant sampling. Our method is based on this
premise

3 OUR APPROACH

3 OUR APPROACH

We can traverse through the height field
in lines, instead of independent points

Idea is to process whole lines, so that we can utilize whatever coherency there is in
processing adjacent samples on a line

3 OUR APPROACH

When marching along
the line, previous height
values are remembered

Horizon values are
extracted from this

internal representation

We march one step at a time, and use an internal representation of the height function so far

3 OUR APPROACH

Maintain a convex hull
subset of all samples so far,
and the horizon angle for

each new sample is
determined by the previous

value in the subset

Now this is important:
If we consider the convex hull subset of all samples, including the new sample, the horizon
angle for the new sample cannot be determined by any other sample than one of the convex
hull subset. Furthermore, each element in the set can have a direct line of sight only to its
neighbors, so the horizon angle backwards is determined by the previous element in the set

3 OUR APPROACH

All we need to do when processing
the next sample is to add it to the
subset while retaining convexity

In this case for example, the previous elements in the set (marked in red), are to be removed

3 OUR APPROACH

Store the convex hull subset in a stack, pop it until the
2 topmost values and the new sample are convex

1st iteration fail pop

2nd iteration fail pop

3rd iteration pass push(new)

Each time you add a sample, you pop the stack until the tail is convex
You can check the convexity easily by comparing vector slopes

3 OUR APPROACH
A line of N samples:

N pushes to the stack

<N pops (one iter. each)

N iterations without a pop

At most 2N iterations total

Computational complexity is O(N)

The algorithm is also very compact and fast to execute on GPUs

4 COMPUTATION FRAMEWORK

4 COMPUTATION FRAMEWORK

Processing along parallel lines
Not a suitable candidate for a fragment program

We process lines, not pixels as with fragment programs, so we need to write multiple
locations across an output buffer from a thread.
Scatter writing not possible with fragment shaders

4 COMPUTATION FRAMEWORK

Calls for GPGPU, we use CUDA
Memory coalescing still possible
Enough threads to utilize a GPU

However, this still maps efficiently to graphics hardware.
(1) We can still utilize memory coalescing by writing results to an aligned output buffer (GPU
mem. ctrller only requires 1D write patterns)
(2) We can have enough threads to utilize a GPU, especially when we process multiple
directions at once (89k threads for 1024*1024 HF w/ 64 dirs) -- trivially parallelized
We can build thread blocks so that thread spans don’t differ that much but memory
coalescing is still possible

4 COMPUTATION FRAMEWORK

OpenGL PBO to CUDA Array

One sweep for each direction
(in this example 0°, 30°, 60° ... 330°)

90° rotations are linearly combined for
reduced overhead in OGL interop.

Resulting textures are blended in OpenGL

As many sweeps (each generating horizon angles for one direction) as possible is performed
at once, limited by how much VRAM can be used
During combining, also lighting is calculated, but not included in this presentation
There’s expensive overhead in current OGL interop (APIs & their implementations rapidly
changing, though) so we combine some textures already in CUDA. The whole pipeline uses
HDR values

5 RESULTS

5 RESULTS
Time complexity reduction from O(N3) to O(N2)

38 Hz
Our method

No geometry approximations
Soft and hard shadows

2.5 Hz
Snyder et al. 10242 HF, 16 azim. dirs

To the left is the previous state-of-the-art from Snyder et al.
This is 1024^2 height field shadowed for 16 azimuthal directions on an G80 card (same card
for both)
We are able to do both soft and hard shadows, because we don’t approximate geometry (and
use an accurate lighting model). And we’re faster too, even more so when HF size, lighting
resolution and azim. dir. count grows.

5 RESULTS

Here you can see this method’s ability to handle both hard and soft shadows

5 RESULTS
Choosing the number of azimuthal directions...

HDR cube map lighting environments on the left, 1024^2 height maps on the right
Let’s see how azimuthal directions affect

5 RESULTS

16 32 64

Choosing the number of azimuthal directions...

Here you can see the effect of the number of azimuthal directions. For worst cases, even 128
might be required to acquire smoothness. Then again, 16 might be enough for complex
geometry where shadows don’t produce that visible boundaries

5 RESULTS
Performance figures

It’s pretty much linear in height field size and the number of azimuthal directions
For example 1024^2 with 64 directions is 23 fps. Rather insensitive to geometric content.
If you’re interested in some very high definition for e.g. offline graphics, you can do
4096x4096 height fields (34M polygons) with 1024 directions in 8 secs a frame

6 VIDEO DEMONSTRATION

QUESTIONS?

