Eurographics Symposium on Rendering 2013

Line-Sweep Ambient Obscurance

Ville Timonen'

Turku Centre for Computer Science
Abo Akademi University

Figure 1: SSAO rendered by our method at 1920x 1080 (+10% guard band) in 1.7 ms on a GeForce GTX 480.

Abstract

Screen-space ambient occlusion and obscurance have become established methods for rendering global illumi-
nation effects in real-time applications. While they have seen a steady line of refinements, their computational
complexity has remained largely unchanged and either undersampling artefacts or too high render times limit
their scalability. In this paper we show how the fundamentally quadratic per-pixel complexity of previous work
can be reduced to a linear complexity. We solve obscurance in discrete azimuthal directions by performing line
sweeps across the depth buffer in each direction. Our method builds upon the insight that scene points along each
line can be incrementally inserted into a data structure such that querying for the largest occluder among the
visited samples along the line can be achieved at an amortized constant cost. The obscurance radius therefore has
no impact on the execution time and our method produces accurate results with smooth occlusion gradients in a
few milliseconds per frame on commodity hardware.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Computer Graphics—

Volume 32 (2013), Number 4

Color, shading, shadowing, and texture

1. Introduction

Ambient occlusion and obscurance (AO) have become de-
facto parts of global illumination implementations, and their
screen-space evaluation (SSAO) has been widely adopted in

T e-mail: vtimonen@abo.fi

(© 2013 The Author(s)

Computer Graphics Forum (© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

real-time applications. Since its inception in 2007, SSAO has
seen a steady line of improvements both in render quality
and render time. However, its computational complexity has
remained fundamentally the same. The distance of the AO
effect is defined in eye-space and may thus cover a large
range in screen-space, and high quality results still require

V. Timonen / LSAO

more samples per pixel than is practically affordable in real-
time applications.

One established SSAO method is Horizon-Based Ambi-
ent Occlusion (HBAO) [BSDOS8] [Bav11] which accumu-
lates obscurance from a set of azimuthal directions, finding
the largest occluder in each direction by ray marching. While
HBAO’s physically based treatment of geometry scales well
quality-wise, the number of samples that is necessary in each
azimuthal direction for high quality results is prohibitive
performance-wise. Given K azimuthal directions and N steps
along each direction, HBAO’s time complexity per pixel is
O(KN).

We propose a method to calculate the same results in
O(K) time with unlimited range. Instead of calculating the
obscurance independently for each receiver pixel, we per-
form line sweeps over the screen. Each line is traversed in-
crementally, and the visited geometry along the line is stored
in an internal data structure which can be queried in amor-
tized constant time for the largest falloff attenuated occluder
at the new pixel. This significant reduction in the time com-
plexity of SSAO allows the fast production of high quality
renderings which is not impacted by the range of the effect.
Since we are not allowed to choose the azimuthal directions
for each pixel freely, but rather use a set of directions shared
by multiple screen pixels, our main visual artefact is banding
which can be alleviated by increasing K.

2. Previous Work

Evaluating AO from the geometry in the depth buffer was
first proposed by [Mit07] and [SAO7] who sample a vol-
ume around the receiver pixel and determine the occlusion
from the number of points that fall below the depth field. As
scene geometry not merely blocks incoming light but also
reflects it, an empirically selected falloff function [ZIK98] is
usually introduced that weighs the sampled scene points ac-
cording to their distance from the receiver by putting more
weight to nearby occluders. Ambient occlusion extended
by a falloff function has been termed ambient obscurance.
Since [Mit07] and [SA07], several works such as [BS09]
[LS10] [MOBHI11] [MMLI12] have refined the quality and
rendering speed of SSAO methods.

Evaluating each sampled scene point independently from
each other ignores the fact that the evaluation of occluders
in roughly the same azimuthal direction is not separable: A
tall nearby occluder might make occluders behind it invisible
such that these do not contribute to occlusion regardless of
their elevation. To address this issue [BSDO08] takes a more
physically based approach along the lines of Horizon Map-
ping [Max88], whereby the highest horizon within a certain
range is searched for a set of azimuthal directions. While
this approach scales well with respect to image quality and
obscurance radius, it is expensive because many height field
samples have to be taken in each azimuthal direction. Our

method produces results essentially identical to [BSDO0S8] but
we find the largest occluder in O(1) time for one azimuthal
direction within an unbounded radius.

We build upon the observation by [TW10] that sweeping
through a height field in lines and incrementally building
the convex hull of the visited geometry allows the extrac-
tion of global horizons in constant time for the purpose of
horizon mapping. In ambient obscurance, where the falloff
function attenuates occlusion with distance, the global hori-
zon is often very far away and contributes little to occlu-
sion, making the convex hull of little use in determining AO.
Also, [TW10] scans the height field densely and accumu-
lates rotated versions of the sweeps. This results in banding
unless many azimuthal directions are scanned, which in turn
becomes computationally expensive.

Our contribution over [TW10] is three-fold:

o Instead of using a geometrical convex hull, we form a hull
based on the falloff weighted obscurance.

e We generalize the scans to arbitrary sampling densi-
ties and propose a way to gather results sparsely per-
pixel, which allows trading high render times for edge-
respecting blur when the number of azimuthal scanning
directions is increased.

e We also suggest special line sampling patterns for cases
where depth buffer values cannot be interpolated (often
the case in SSAO).

3. Overview

The observation behind HBAO is that SSAO is physically
separable per pixel in azimuthal directions. We also exploit
this observation and calculate obscurance in K discrete az-
imuthal directions. For physically correct ambient obscu-
rance, in each azimuthal direction the falloff weighted oc-
clusion should be integrated from the tangent plane upwards
until the global horizon as shown to the left in Figure 2. This
results in unavoidably high complexity as obscurance has to
be gathered in many segments.

Figure 2: Left: Obscurance gathered in segments of the ele-
vation angle between the tangent plane and the global hori-
zon onto receiver p. Each segment is shaded according to
the strength of the falloff term. Right: Obscurance from the
largest falloff weighted occluder, o, only.

However, if we are willing to make the sacrifice that

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen / LSAO

we calculate obscurance in each azimuthal direction from
only one occluder along that direction—the one that casts
the largest obscurance, as shown to the right in Figure 2—
an order of magnitude more headroom is made available
complexity-wise, which we in this paper show how to ex-
ploit. We define largest occluder as the occluder that would
cast the largest amount of obscurance on the receiver were it
the only occluder along the azimuthal direction. Fortunately,
it turns out that the visual impact of only considering the
largest occluder per direction is modest, as illustrated in Fig-
ure 3.

Figure 3: Right: Full obscurance. Left: Obscurance from the
largest falloff weighted occluder only.

Approximating obscurance from a single occluder typ-
ically yields underestimated obscurance because geometry
below the largest occluder tends to be closer than the largest
occluder (higher falloff term) and also because obscurance
coming above the largest occluder is simply ignored. How-
ever, given the approximated nature of SSAO the results are
entirely plausible and can be further compensated by lifting
the falloff function or by adjusting brightness/constrast in
post-process.

3.1. Our Method

Instead of calculating AO for each receiver pixel inde-
pendently (done predominantly in prior work) we traverse
through the depth field along lines that cover the framebuffer
evenly as shown in Figure 4. In a threaded implementation

w

A N N A A 4
‘\\ RN ~N 4 /,/" B A L
A AN T o b
| ~ ~| e e T
H ~ -
Da. ml e o A
A AR N T CaZa
N Pl D raili¥s i

Figure 4: Sweeps in K = 3 directions over a 8 X 6 frame-
buffer. A total of K -W - H samples/receivers are considered.

each thread processes one line, and the line is traversed one

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

constant length step at a time. At each step the depth field is
sampled and the sampled point is deprojected into eye-space.
This point is then stored onto a stack using an algorithm (de-
scribed in detail in Section 4) that has an amortized constant
cost per step. Processing a line of N steps therefore has the
complexity of O(N). At any given point the largest occluder
is always found at the top of the stack.

Our method is compatible with obscurance estimators that
evaluate obscurance from a set of azimuthal directions and as
input take the horizon angle and the distance to the occluder.
In this paper we have chosen to use HBAO’s obscurance es-
timator:

K—1

40(p.) ¢ X, (sin0)-+ sinth) —sin0) oIl).
M
Dy = (sin(av), cos(av)), 00 = k- 21/K,

u = _(ny '5k7p2)7ﬁ< = (_ﬁmﬁxy '5k)ahk = (5xy '5ka5z)a

sin(t) = f - iy, sin(h) = hy, - iy

for receiver point p with normal 7. The eye is located at the
origin and i}, is the zenith vector towards the eye. All vec-
tors denoted by subscript k are projected onto the 2D plane
along the azimuthal direction defined by the vector Dy. Vec-
tor ¢ points from p towards the largest occluder along the
azimuthal direction. The terms are illustrated in Figure 5. It
should be noted that the first sin(r) in the sum in Eqn. 1 gets
canceled by opposing directions when both directions use
the same tangent plane. As we discuss strategies where this
is not the case, in Section 4.1, we include the term in our
obscurance estimator to ensure that AO does not evaluate to
a value larger than 1.

o U

Figure 5: [llustration of the terms used by our obscurance
estimator in Eqn. 1. Vector G is the vector from the receiver
P o the largest occluder, Uy, is the unit zenith vector towards
the eye, and t and h are the tangent plane and horizon an-
gles, respectively, from the zenith normal.

Our method can use any monotonically decreasing falloff
function p and for this paper we have selected an inverse
quadratic function similar to the function reported aestheti-
cally agreeable in [FMOS]:

p(d) =

r

s @

V. Timonen / LSAO

where r is used to control the decay rate.

The obscurance results written along the processed lines
are gathered per pixel in a separate phase, described in Sec-
tion 5. In Section 5 we also cover how lines are positioned
in the framebuffer and how sampling coordinates should be
chosen. Rendered images and execution times are then pre-
sented in Section 6 and compared against the most relevant
previous work.

4. Line Sweeping

In this section we describe the process of sweeping through
one line in the framebuffer. The output of this process are
obscurance values for the points along the line written to an
intermediate buffer.

4.1. Obscurance Hull

We first recapitulate the main idea behind incremental con-
vex hulls as introduced in [TW10] as our data structure is
motivated by it. In [TW10] height field points are iterated
along a line and incrementally inserted onto a stack that
holds the convex subset of the visited points. In order to keep
the stack convex before pushing a new point in, elements are
popped from the stack (shown in red in Figure 6) until the
last 2 points on the stack and the point to be added form
a convex set. The three points form a convex set when the
vector from the new point to the last point on the stack has a
lower slope than the vector from the new point to the point
second to last in the stack. Because the stack can be assumed
to have been convex in the previous iteration, due to induc-
tion it will remain convex after pushing the new point in. In
the convex hull the global horizon for the new point is cast
by the point next to it, which is now second to last in the hull
(shown in blue in Figure 6).

popped points

direction of line sweep

Figure 6: A convex hull before (dashed line) and after (solid
line) adding the new point p. The global horizon for p is cast
by the point next to it in the hull, marked in blue.

For the purpose of determining SSAO however, the global
horizon might be far away from the receiver, and, accord-
ing to the falloff function, might cast an insignificant obscu-
rance on the receiver. Since we are trying to find the point
between the global horizon and the receiver that casts the

largest falloff weighted occlusion we have to use an addi-
tional criterion to geometrical convexity for the hull. Instead
of popping the stack until the point to which the slope from
the receiver is the lowest is at the top, we pop the stack un-
til the point which casts the largest obscurance onto the re-
ceiver is at the top. The main difference to [TW10] is the
boolean function (with the three points as parameters) which
determines whether to pop elements from the stack: Instead
of testing for convexity, we compare the obscurance (Eqn.
1) from the last 2 points in the stack onto the new point.
Points are popped from the stack until the last points casts
the largest obscurance, or until the global horizon is reached.
We refer to a hull formed according to these criteria as an
obscurance hull. The obscurance hull will not necessarily be
convex and points in the beginning of the stack are progres-
sively losing weight due to the falloff function.

However, it is possible that in some extreme cases the ob-
scurance hull does not return the largest occluder for a re-
ceiver. In order to provide some intuition on when this can
happen, consider p to be a step function that puts full weight
to occluders within distance r and zero to others. Next, con-
sider that the colored points in Figure 6 are within r from
p and a new point, q, is encountered after p along the line.
Now, let q be at a height where the popped (red) points are
visible to q and within r, whereas the blue point falls out-
side r. In this case one of the popped points casts the largest
obscurance on q but instead p is returned by the obscurance
hull. Cases like this are rare but can occur in areas of rapid
depth changes. We measured the average error in the final
AO value caused by these degenerate cases to be small—
between 0.02% and 0.3% in scenes presented in this paper.

Some attention must be paid to the fact that the tangent
plane of the receiver appears in Eqn. 1. Obscurance is cut by
sin(t) which is not globally fixed. Therefore forming an ob-
scurance hull using one tangent plane might not give the cor-
rect obscurance onto a receiver that has a different tangent
plane. Eqn. 1 will be used to determine which points are to be
culled atop the stack, and also for calculating the obscurance
on the receiver once the largest occluder is found. There are
three main strategies for choosing the tangent plane for these
two operations:

1. Points are culled and obscurance is calculated using the
receiver’s real tangent. This however will cause the ob-
scurance hull to rapidly unfold when the tangent becomes
steep (high sin(r)), which may result in future largest oc-
cluders being culled and therefore in missing occlusion.

2. Points are culled assuming a globally fixed tangent while
the obscurance is calculated using the receiver’s real tan-
gent. This makes occlusion discontinued because the ob-
scurance hull gives the largest occluder based on different
criteria than the actual per-receiver obscurance is calcu-
lated with.

3. The tangent plane is fixed for all calculations ignoring the
real tangents of the points.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen / LSAO

reference

Hull: real tangent,
" | Occ: real tangent:

L
Hull: sin(r) = 0.0, “
Occ: real tangent: error X2 | ! I/ !

2. [| " 1
uttsin) = 05, | I
Occ: real tangent: error X2 1 1 4! '
Hull: sin(t) = —0.5, ,
Occ: sin(t) = —0.5: /

3.
Hull: sin(z) = —1.0,
Occ: sin(r) = —1.0:

Figure 7: Various strategies for treating the tangent plane
sin(t) when constructing the obscurance hull ("Hull:") and
when calculating the obscurance ("Occ:"). The images show
the contribution of a single AO sweep directed to the right. A
cut from the Sibenik scene is shown for each strategy above
the respective error image. Areas of interest a, b, and c are
highlighted in blue.

Figure 7 visualizes ambient obscurance contribution from
a single sweep in the Sibenik scene using the three strate-
gies. A cut from the scene is shown from a part where the
tangent varies with respect to the sweep direction. The ref-
erence image is created by going through all steps along the
sweep line for each receiver individually in brute-force and
picking the largest occluder.

Strategy 1 may result in occlusion that is flat in regions
where, instead, a gradient should appear (area a in Figure 7).
Along a sweep, strategy 2 may switch from an occluder to
the next at a point where occlusions cast by the consecutive
occluders do not match. This causes a jump in the occlusion
value which is perceptually prominent (area c¢ in Figure 7).
Strategy 3 both constructs the hull and evaluates occlusion
using the same tangent value and therefore produces con-
sistent, however biased, obscurance. The bias comes from
the fact that the tangent plane splits the occlusion integral in
two parts whose falloff terms differ: The first part is below
the tangent plane and has p = 1 and the second is above the
tangent plane and has p < 1 that is dependent on the dis-
tance to the occluder. If sin(z) is chosen large, part of the
integral that should be evaluated using the occluder’s dis-

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

tance (i.e. is above the real tangent) may instead be consid-
ered to be below the fixed tangent plane and evaluated using
p = 1 causing overestimated occlusion. This is visible in area
b when sin(r) = —0.5. If sin(r) is chosen small, the opposite
may happen: Integral below the real tangent plane may get
weighted using the distance to the occluder, causing under-
estimated occlusion, which is most visible in area ¢ when
sin(t) = —1.0.

While fixing the tangent (strategy 3) does not result in
geometrically correct calculations, or even the smallest ab-
solute out of the three options, we consider its error most
suitable to the approximated nature of SSAO. Also, the aes-
thetically chosen falloff term can be used to compensate for
underocclusion. In the following sections we have chosen
to fix all tangents to sin(r) = —0.85 which produces mainly
underocclusion.

4.2. Algorithm

Algorithm 1 lists the pseudocode for processing one line in
the framebuffer. For a line of M steps there are exactly M
pushes to the stack and therefore at most M pops. In addition,
there is one iteration per step that terminates the loop at lines
12 — 18 without causing a pop, which results in finding the
point that casts the highest obscurance. Therefore the inner
loop will perform between M and 2M iterations in total and
yields the time complexity of O(M) for the algorithm.

5. Gathering Line Sweep Results

In this section we cover how lines are spread out in the
framebuffer, how sampling coordinates are selected along
the lines, and finally how the obscurance results from pro-
cessed lines are gathered per final rendered pixel.

5.1. Line Placement

In order to densely evaluate obscurance for each of the K
directions lines can be placed 1 pixel width apart and steps
along each line can be chosen to be 1 pixel width long. As a
result obscurance is evaluated at W - H pixels for each K di-
rections (previously illustrated in Figure 4). Since the same
set of azimuthal directions is shared by all pixels, banding
may become visible unless a large K is used. Increasing
K eventually hides banding, but render times also increase
linearly in K. In order to speed up rendering when a large
K is used it is often desirable to evaluate obscurance more
sparsely.

Instead of placing lines 1 pixel width apart, we can spread
them Dy pixel widths apart where Dy is a given fixed value.
Also, instead of taking 1 pixel width steps along each line,
we can take Dy pixel width steps. Having Dy, and Dy larger
than 1 effectively causes obscurance in one azimuthal direc-
tion to be evaluated sparsely. In order to gather the sparse
results for each receiver pixel in the frame buffer, we select

0N N AW~

NSNS I ST S N\ RN SR S TSI S LS N o s e e s s e e
O X0 I NN WD~ OOVWOIANWNRA WD —= O\

V. Timonen / LSAO

Algorithm 1 SweepLine(float2 pos, float2 dir, int steps)

Functions peekl() and peek2() return the last and the second
to last element of the stack, respectively.

while (steps——)

{
float3 p = deProj(sampleDepth(pos))
float2 py = float2(p.xy - dir, p.z)

// Unit vector towards the camera
float2 uy = —py /|| pk||

float2 h1 = hull.peek1() — px
float2 h2 = hull.peek2() — px

while (occlusion(hl, ug) < occlusion(h2, uy) &&
hl-ug/[[h1]] <h2-uk/|[h2]])
{
hull.pop()
hl =h2
h2 = hull.peek2() — px
}

writeResult(occlusion(hl, uy))
hull.push(pg)
pos +=dir

}

float occlusion(float2 h, float2 u)
{
// sin(t) = —0.85
return sin(t) + max (0, h-u/|[h||— sin(®)) - p(

Ihil)
}

the nearest point in each K direction at which obscurance
was evaluated and average the results. Figure 8 illustrates
sparse sweeps using Dy = Dg = 2.0. Each sweep therefore
subsamples the depth field in a rotated grid pattern.

When the subsampled results from K sweeps are gathered,
a different set of points will be selected for each screen pixel
but the full azimuth of K directions is included and therefore
no noise is produced to the image. Instead blur is produced,
because the values that are averaged are sampled from the
neighborhood of the receiver pixel and not exactly at it. To
limit blurring, the average can be taken only from points
that have the normal, the depth (used in this paper), or both
within a threshold of the receiver, which is similar to edge-
awareness used by blur filters in previous methods. Previous
methods usually apply a large blur kernel to hide banding or
noise in post-process, whereas we hide banding by increas-
ing K and counter increase in execution time, in exchange
for blur, by gathering sparsely evaluated obscurance values.
The K nearest obscurance values for each screen pixel are

found within the radius of \/(Ds/2)% + (Dr./2)* which for

w
> o
° Er GD /0/
e 3 -~
" e ° é °
/. o

Figure 8: Sparse (Dg = Dy = 2) sampling in 3 azimuthal
directions (K = 3). The K highlighted points are selected for
the screen pixel marked in gray.

sparsities used in this paper are small compared to a typical
post-process blur filter radius.

5.2. Sampling Coordinates

If the depth field is assumed not to be an infinitely thick vol-
ume, depth samples cannot be interpolated across depth dis-
continuities without causing temporal and spatial artefacts.
In [BSDO8] this is addressed by snapping sampling coor-
dinates to texel centers, and methods relying on mipmaps
(such as [MML12]) do not actually average values but in-
stead use the values found in the base level of the depth
buffer.

However, sampling coordinates along arbitrary lines in
our method do not usually hit texel centers. Always snap-
ping to texel centers, on the other hand, produces artefacts
because the pattern of visited samples is not the same for
every receiver along the line as shown in Figure 9. This is
especially prominent on steep surfaces where a small devi-
ation from the center of the sweep line causes large jumps
in the sampled depth values. One possibility is to use linear
interpolation when traversing along a line until an edge is
detected (depth or normal changes too much from the previ-
ous point), in which case the sampling coordinate is snapped
to texel center and sampled again. While this eliminates the
sampling artefacts, it incurs some overhead and impacts per-
formance.

However, it is possible to choose the K directions and Dg
such that the snapped sampling coordinates of previously
visited samples at any receiver form the same pattern. The
4 trivial cases are the axis aligned directions, for which any
Dg can be used. For larger values of K, directions can be
chosen using a grid of (2n+1) x (2n+1),n € Z" texels as
a template as shown in Figure 10. This gives K = 8n aligned
directions. For each direction we choose the step length Dg
and the direction such that they match the vector from the
center of the grid to each of the outer edge texel centers.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen / LSAO

Figure 9: The colored texels will be sampled when sampling
coordinates are snapped to texel centers. For two different
receivers along the line (in blue), the sampling patterns (in
red and green) relative to the receiver differ (1 left/0 down
and 2 left/l down vs. 1 left/l down and 2 left/l1 down) and
show up as noise in the obscurance on slanted surfaces.

o N 7|
A Ao ol
= < >
v e \
/ 1N\
¥y [N
K=8,Dg=141 K =16,Dg =2.43

Figure 10: Aligned sampling patterns and their average step
length Dg. The axis aligned directions use Dg that is the av-
erage of the rest of the directions.

While this allows safe snapping of sampling coordinates
to texel centers, the average Dy increases along with K. For-
tunately this is not a problem, since increasing X is often off-
set by making the sampling sparser (larger Dg and Dy) such
that banding is traded for blur without increasing the exe-
cution time. The average number of calculated obscurance
values per pixel is K/(Ds - Dp).

Choosing sampling directions according to the box pat-
tern causes directions near the diagonals to be sampled more
densely. In order to avoid bias resulting from this, contri-
bution along directions should be weighted according to
the azimuthal coverage of each direction, such that smaller
weights are given to the diagonal directions. This will result
in slightly higher resolution sampling near the diagonals in-
stead of bias.

Figure 11 shows a scene with a slowly decaying falloff
(to accentuate banding) and different values of K, Dg, and
Dy such that the number of obscurance values per pixel re-
mains constant. Obscurance values, here, are gathered per-
pixel by respecting depth edges but ignoring normals. Re-
specting normals as well can be used to further contain blur.

Our implementation uses an intermediate floating point

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

K=8,Dg=1.41,D; = 1.41:

Figure 11: Different number of azimuthal directions K with
sampling sparsities such that the density of obscurance val-
ues per pixel remains constant (K /(Ds-Dr) = 4).

buffer the size of K- W - H/(Dg - D) elements to store the
obscurance values of the line sweeps. For Dg = 4.87,D; =
2.46,K = 16,W = 1920,H = 1080 (Figure 13) and Dg =
2.83,D;, =2.12,K =8, W = 1920, H = 1080 (Figure 1) this
is approximately 11 MB. Under tight memory constraints
it is also possible to scatter the results to the framebuffer
directly using atomic additions during line sweeps, but as
this produces highly uncoalesced writes on a GPU we found
its performance notably worse than using the intermediate
buffers.

6. Results

Since traversing lines that vary in their length and thus
write a different number of output values does not map
well to fragment shaders, our algorithm requires either com-
pute shaders or GPGPU. We have selected to use CUDA

V. Timonen / LSAO

and made the sources available under the BSD license at
http://wili.cc/research/1lsao/. The benchmarks are
performed on an NVidia GeForce GTX 480 GPU. The
HBAO method used as the reference is implemented as an
OpenGL fragment shader. For quality and performance com-
parison between HBAO and other recent SSAO methods, re-
fer to [VPG13] and [McG10].

HBAO requires a falloff function that decays to 0, and we
have chosen the following falloff function for HBAO:

1+C
po(d) = max (O, % —C) 3)

This function has roughly the same shape as Eqn. 2 for small
C. Compared to Eqn. 2 it is sunken by C, clipped to 0, scaled
to start from 1, and reaches zero atd = \/r/T In this section
we use C =0.3.

Figure 12 shows two scenes rendered at
1280(+256)x720(+144) (20% guard band) using two
different rates of decay r for the falloff function. Our
method uses configurations for K = 8 and K = 16 shown in
Figure 11, whereas the number of HBAO steps N have been
hand-picked for each scene and are scaled per-pixel to cover
the eye-space falloff radius. The execution time of HBAO is
different for the two falloff decay rates because a different
number of steps has to be taken to cover the bulk of the
falloff function with the same granularity. The execution
time of our method depends mainly on the variance in the
number of iterations of the inner loop in Algorithm 1 within
warps of threads, and does not vary significantly. In all
scenes our method performs roughly 2K iterations per pixel
on average (=~ K during line sweeps and K for gathering
the results) whereas HBAO has to perform an order of
magniture more, K - N.

Table 1 shows scaling with respect to screen resolution
in the Sponza scene at K = 16 (bottom left in Figure 12).
HBAO has to use larger N at higher resolutions to cover the
eye-space falloff at the same screen-space accuracy, whereas
our method has a constant per-pixel cost and scales linearly
in the resolution. The execution time of HBAO in fact in-

Table 1: Total render times of our method and HBAO at dif-
ferent resolutions using 20% guard band. The scene is shown
in Figure 12 to the bottom left.

Screen resolution Our method HBAO
800x 600 1.49 ms 10.5 ms
1280x 720 2.56 ms 24.2 ms
1920x 1080 5.24 ms 92.5 ms
2560 % 1600 9.58 ms 249 ms

creases slightly faster than cubicly in the number of screen
pixels because of increased texture cache misses, whereas
the slower than quadratic scaling in the execution time of
our method at lower screen resolutions is due to the small

number of threads (i.e. lines to sweep) which impacts hard-
ware utilization. Our method takes very few texture samples
and is not much impacted by a texture cache miss penalty.

Our method consists of two stages: The line-sweep stage
and the result gathering stage. Table 2 shows execution time
breakdown for these two stages when K is increased but
K/(Ds - Dy) is kept constant. Even though the amount of in-
termediate sweep data stays the same, more data is read per
pixel which shows up as a steady increase in the execution
time of the gather stage. Execution time of the line-sweep
stage, on the other hand, decreases slightly because the work
is split into a larger number of threads that run shorter, which
improves hardware utilization.

Table 2: Render time breakdown per stage for our method
at 1280(+256)x 720(+144) for cases shown in Figure 11.

Configuration Line-sweep Gather
K=8,Ds=1.41,Dp =141 1.91 ms 0.38 ms
K=16,Dg=2.43,D; = 1.64 1.80 ms 0.59 ms
K =24,Dg =3.56,D; = 1.69 1.67 ms 0.73 ms
K=32,Dg=4.69,D; =1.70 1.60 ms 0.90 ms

Finally, two more scenes rendered at 1080p resolution
are shown in Figures 1 and 13. Both scenes are rendered
at 1.33 obscurance evaluations per pixel in roughly 2 ms;
Figure 1 with K = 8,Dg = 2.83,Dy = 2.12 and Figure 13
with K = 16,Dg = 4.87,D;, = 2.46. Since our method uses

Figure 13: SSAO rendered by our method at
1920(+192)x 1080(+108) in 2.3 ms on a GeForce GTX 480.

a globally fixed set of K azimuthal directions, a small K can
result in severe banding. Our primary way of fighting band-
ing is by increasing K, and our primary way of fighting high
render times due to a high K is by controlling the sparsity
parameters Dy and Dg. In summary, the configuration of our
algorithm is a balancing act of performance, banding, and
blur: A small K and high Dy and Dg improve render times,
whereas a high K reduces banding and small Dy, and Dy re-
duce blurring.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

http://wili.cc/research/lsao/

V. Timonen / LSAO

OurK =16 HBAO K = 16,N =48

&1

37.2 ms
HBAO K = 16,N = 32

5.8 ms
HBAO K =8,N=16

-

\\‘/\

2.56 ms

Figure 12: Scenes rendered at 1280(+256)x 720(+ 144) using different falloff decay rates by our method and HBAO. For HBAO,
the number of steps along each of the K azimuthal directions is denoted by N.

7. Conclusion

Our method is the first attempt to reduce the underlying time
complexity of SSAO since its introduction in 2007. Previous
methods rely exclusively on strategies that, in order to deter-
mine visibility of (and eventually occlusion from) m sampled
scene points around n receivers, require O(mn) work. Many
of the m points are not visible to the receiver or cast only a
small amount of occlusion. In contrast, our method finds the
largest falloff weighted occluders along K azimuthal direc-
tions for n receivers in O(Kn) time. The falloff radius has
no impact on the performance or on the image quality of our
method. The largest occluder is found in constant time at per-
pixel accuracy regardless of its distance from the receiver,
therefore avoiding exhaustive sampling based searches used
by previous methods.

Our method uses a globally fixed set of K azimuthal di-
rections and is prone to exhibit banding for small K. In order
to avoid having to increase execution time linearly in K to
hide banding, it is possible to accept blur instead by eval-
uating obscurance at a lower than per-pixel density along
the depth field and gather, per final screen pixel, the near-
est value from each azimuthal direction. Overall our method
greatly improves the render times of medium to large range
SSAO effects and scales well to high resolutions.

References

[Bavll] BAvoOIL L.: Horizon-based ambient occlusion using
compute shaders. NVIDIA Graphics SDK 11 Direct3D (2011).
2

[BS09] BAvoIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09 Talks (2009),
ACM. 2

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

[BSDO8] BAvVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SSIGGRAPH ’08: ACM SIG-
GRAPH 2008 talks (New York, NY, USA, 2008), ACM, pp. 1-1.
2,6

[FMO8] FILION D., MCNAUGHTON R.: Effects & techniques.
In ACM SIGGRAPH 2008 Games (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 133-164. 3

[LS10] Loos B. J., SLOAN P.-P.: Volumetric obscurance. In
Proceedings of I3D 2010 (2010), ACM. 2

[Max88] MAX N.: Horizon mapping: shadows for bump-mapped
surfaces. The Visual Computer 4,2 (Mar. 1988), 109-117. 2

[McG10] MCGUIRE M.: Ambient occlusion volumes. In Pro-
ceedings of High Performance Graphics 2010 (June 2010). 8

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In
SIGGRAPH *07: ACM SIGGRAPH 2007 courses (2007), ACM,
pp. 97-121. 2

[MMLI12] MCGUIRE M., MARA M., LUEBKE D.: Scalable am-
bient obscurance. In High-Performance Graphics 2012 (June
2012). 2,6

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HEN-
NESSY P.: The alchemy screen-space ambient obscurance algo-
rithm. In Proc. HPG (2011), HPG ’11, ACM, pp. 25-32. 2

[SAO7] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on gpus. In Proc. I3D ’07 (2007),
ACM. 2

[TW10] TIMONEN V., WESTERHOLM J.: Scalable Height Field
Self-Shadowing. Computer Graphics Forum (Proceedings of Eu-
rographics 2010) 29, 2 (May 2010), 723-731. 2, 4

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-
view ambient occlusion with importance sampling. In Proc. i3D
(2013),13D *13, pp. 111-118. 8

[ZIK98] ZHUKOV S., INOES A., KRONIN G.: An Ambient Light
Ilumination Model. In Rendering Techniques *98 (1998), Dret-
takis G., Max N., (Eds.), Eurographics, Springer-Verlag Wien
New York, pp. 45-56. 2

