
CUDA for Graphics
Ville Timonen, 9.2.2010

Contents

• Motivation

• Use case: Height field shadowing

• Design issues

• Code preview

Why CUDA?

• Hardware resource exposition

• Less limitations; only those of hardware

• Means: (1) You can do (almost) whatever
the hardware can, and (2) you can take
shortcuts for epic performance

Why CUDA?

• For example:

• Shared memory communication

• Arbitrary memory access patterns

Why not CUDA?

• OpenGL does a lot for you, efficiently

• Data alignment, coalescing (rasterization,
vertex/pixel buffers)

• Thread topology, optimal scheduling

• Only use CUDA when you have to

• Whatever OpenGL does, you probably
cannot match with CUDA (perf. wise)

When do you have to?

• When your algorithm does not map to
OpenGL shaders at all, and would
otherwise have to do it in software

• When using OpenGL abstractions forces
you to do things in an awkward (inefficient)
way

Program for the
architecture

• With CPU code, you can “program in C”

• With GPUs, you “program for G80”

• Language (CUDA, OpenCL, ATI Stream
(Brook+, Cal, ...)...) quite irrelevant

Design considerations

• Figure out input and output data

• In which memory to store data in CUDA

• Execution configuration

• Making the kernel efficient

Use case:
Height field shadowing

Self visibility

Screen space ambient
occlusion (SSAO)

Sweeps

A thread for each line

Teaser: Results
Time complexity drops from O(n3) to O(n2)

38 fps2,5 fps

OpenGL <> CUDA

Global (off-chip)
memory

• When passing a buffer object to CUDA, it
gets mapped as linear memory

• There’s no caching whatsoever with linear
memory, you have to be careful with it

• Use CUDA arrays when in doubt - most of
the on-board caching is for texture
sampling (in current architectures)

Using SM for efficient
texture transposing

Shared memory

• The most important means for thread
communication

• Such communication cannot be carried out
in OpenGL shaders

• Shared memory is also very fast, and can be
used for acceleration

Sweeps and
threads

Thread block size

• At least a multiple of 32 (NVidia
recommends 64) for max. utilization

• Not too big though, leave room for the
scheduler to do its magic

• If threads execute different lengths, prefer
small blocks for finer granularity

• Keep an eye on core resources (e.g. SM)

• Make your kernel flexible and experiment!

Grid size
• The bigger the better

• If you fix the thread block size, you rarely
can affect this

• Take into account the number of cores

• Graphics hardware relies on lightweight
scheduling; make sure each core has lots of
threads to choose the work from and it
will fly

More screencaps

teh end.

• I’m on the fourth floor if you have
something to ask

