CUDA for Graphics

Ville Timonen, 9.2.2010

Contents

® Motivation
® Use case: Height field shadowing
® Design issues

® Code preview

Why CUDA!

® Hardware resource exposition
® | ess limitations; only those of hardware

® Means: (l)You can do (almost) whatever
the hardware can,and (2) you can take
shortcuts for epic performance

Why CUDA!

® For example:
® Shared memory communication

® Arbitrary memory access patterns

Why not CUDA?

® OpenGL does a lot for you, efficiently

® Data alignment, coalescing (rasterization,
vertex/pixel buffers)

® T[hread topology, optimal scheduling
® Only use CUDA when you have to

® Whatever OpenGL does, you probably
cannot match with CUDA (perf. wise)

When do you have to!

® When your algorithm does not map to
OpenGL shaders at all, and would
otherwise have to do it in software

® When using OpenGL abstractions forces
you to do things in an awkward (inefficient)
way

Program for the
architecture

® With CPU code, you can “program in C”
® With GPUs, you “program for G80™

® |anguage (CUDA, OpenCL ATl Stream
(Brook+, Cal, ...)...) quite irrelevant

Design considerations

® Figure out input and output data
® |n which memory to store data in CUDA
® Execution configuration

® Making the kernel efficient

Use case
Height field sha

H
THI

1H
_

'

m
H

!

e

1

n

m

f—

Self visibility

%/

Screen space ambient
occlusion (SSAQO)

sweep direction

A thread for each line

Teaser: Results

Time complexity drops from O(n3) to O(n?)

38 fps

OpenGL <> CUDA

Texture OpenGL CUDA

Texture

AB
@ RBO
\‘
dest Src dest Src
PBO | PBO ~ PBO | PBO

W COMPUTATION
dest Src dest Src
PBO | PBO | PBO | PBO
\

Texture
BLEND l

AB Framebuffer

Global (off-chip)
memory

® When passing a buffer object to CUDA, it
gets mapped as linear memory

® There’s no caching whatsoever with linear
memory, you have to be careful with it

® Use CUDA arrays when in doubt - most of
the on-board caching is for texture
sampling (in current architectures)

Using SM for efficient
texture transposing

by oy
(&7 (]

Shared memory

The most important means for thread
communication

Such communication cannot be carried out
in OpenGL shaders

Shared memory is also very fast,and can be
used for acceleration

Sweeps and
threads

A

1...v/2N
2

N

N

Thread block size

At least a multiple of 32 (NVidia
recommends 64) for max. utilization

Not too big though, leave room for the
scheduler to do its magic

If threads execute different lengths, prefer
small blocks for finer granularity

Keep an eye on core resources (e.g. SM)

Make your kernel flexible and experiment!

Grid size

The bigger the better

If you fix the thread block size, you rarely
can affect this

Take into account the number of cores

Graphics hardware relies on lightweight
scheduling; make sure each core has lots of
threads to choose the work from and it
will fly

More screencaps

teh end.

® |I'm on the fourth floor if you have
something to ask

