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Background
Before GPGPU* “broke through”, people mapped 
physics problems as graphics operations 

Programming using e.g. OpenGL shaders 

The specialized graphics HW was efficient for such 
operations

*) General-purpose computing on graphics processing units



Background
On the graphics programming front, graphics libraries’ 
abstractions are constantly being relaxed 

The usual HW is not limited to these abstractions and 
capable of much more 

-> Graphics is also asking for something that exposes 
the actual hardware better



Background
The hardware had been ready.. 

So there was need for GPGPU languages:

Graphics GPGPU General-purpose

Graphics wanted more 
freedom with the cost of 
performance (optimized 
pipelines)

General-purpose 
computation wanted 

more performance with 
the cost of algorithmic 

freedom



How do GPUs pull off higher throughput



How do GPUs achieve high perf.
It is important to understand where this performance 
comes from 

Let’s begin by taking a commonly known CPU:



How do GPUs achieve high perf.
Remove logic that tries to keep the exec. units busy 

And reduce the size of the cache :-(



How do GPUs achieve high perf.
Expand the SIMD units to process even more elements 
at once, and add registers to allow going for SIMT



How do GPUs achieve high perf.
Multiply (up to 16-30 cores) 

Pack in fast memory and a capable memory controller



How do GPUs achieve high perf.

It’s all about how to use your transistor budget 

Summary: 

Logic that tries to keep the execution units busy at all 
times is greatly reduced, and so is the cache 

Expand SIMD 

Make many cores 

Furthermore, GPUs have more transistors than CPUs 

Core i7-980X (6-core) has 1.2G, a GTX480 has 3G



How do GPUs achieve high perf.

What about these 100x perf. improvement boasts? 

Unfounded.  Usually based on suboptimal/bloated/
single-threaded CPU implementations 

There is up to 8 times the memory bandwidth, and 
up to 10 times the raw arithmetic throughput in a 
GPU 

The extra logic in CPUs cover up for badly optimized 
code -> In fact easier to get good performance with 
CPUs



The downside

GPUs are specialized, not for all problems: 

Doesn’t parallelize -> don’t consider GPGPU 

Parallelizes but is control-heavy -> poor perf. 

Depends on a large cache -> not available 

Data-intensive requiring a data set larger than 6GB  
-> CPU <-> GPU transfers will kill the perf.



The downside

An even larger issue is programming complexity 

Making most of a GPU requires you to have either 
(i) Very simple algorithms 
(ii) Expert GPU programming skills



Typical architecture



Typical architecture
Issues the same instruction to multiple exec. units 

w/ CPUs, we manually packed the vectors (SIMD, e.g. SSE) 

GPUs abstract this to concurrent threads (SIMT) 

Optimal perf. only when threads agree on exec. path



Typical architecture

Typical CPUs devote loads of transistors to logic that 
keeps the exec. units from stalling 

GPUs hide latencies and data dependencies by having 
thousands of threads in-flight to choose from 

Switching between threads essentially a no-op



Typical architecture

GPUs have lots of registers (e.g. 128kB/core) to store 
contexts for so many threads 

They have small on-chip memory (e.g. 64kB/core) that 
can be manually accessed 

Very little per thread, but good for communication 

Fast global off-chip memory, be careful with accessing



Typical architecture

Avoid bank conflicts with the on-chip memory 

Very important: 

Global memory access patterns can make or break 
performance 

With the exception of Fermi, there’s no cache, and 
requests map directly to controller transactions



The Fermi architecture

The fastest version is the enthusiast GTX480 (1.5GB) 

Slightly slowed-down Teslas exist w/ larger memory 

3GB or 6GB of ECC @ 144GB/s 

768kB L2 cache on top of the global memory 

14 cores (448 exec. units total -- i7-980x has 24) 

Up to 1 Tflop/s single precision, 0.5 Tflop/s double  
(i7-980x does ~140G / 70G respectively)



The Fermi core

32 exec. units 

Dual-scheduler 

Capable of running a kernel 
independently 

On-chip mem. configurable as L1



The big picture

Mem

i7-980x

20 GB/s

160 Gflop/s

Mem

C2070

140 GB/s

1030 Gflop/s

8 GB/s* 
PCI-E6 GB/s*

Seastar2 
(inter-node)

*) ~2GB/s in practice
*) ~5GB/s in practice



Current situation & the future



Current vs. future

Scheduling 
logic 

Utilization 

Ease of 
programming 

Generalization

Throughput 
(Gops/s) 

Specialization

ATI 

NVidia 

Intel



Current vs. future
Could we combine a GPU and a CPU into a hybrid? 

They are architecturally different, that’s the whole idea 

They both have global memory and a cache on top of it 

We could probably unify these -> fast communication 

CPU mem. is too slow currently 

We could put the extra CPU logic to only some of the 
GPU cores!



Current vs. future



GPGPU languages



GPGPU languages

High level languages: 

OpenCL 

C for CUDA (NVidia) 

DirectX Compute (Microsoft) 

Cal/Brook+ (ATI, but prefer OpenCL)



GPGPU languages

OpenCL 

Khronos’s GPGPU standard 

Everyone’s in it: AMD, Intel, Apple, Nokia, NVidia...* 

So it moves slowly

*) Except Microsoft of course, who wants their proprietary solutions to triumph over the open ones



GPGPU languages
CUDA 
NVidia’s solution for early adopters 
Has been around the longest, most mature 
Support for every new hardware feature NVidia releases 
will be immediately available 
Has optimized libraries (by NVidia) for common tasks: 

BLAS routines (all levels) 
Sparse matrix operations 
Pseudo random number generation 
FFT routines, etc...



GPGPU languages

Choose OpenCL whenever you can 

If you do something fancy you might need CUDA 

If plan on using ready-made libs, today, choose CUDA



GPGPU languages

The future? 

Some compilers already make GPGPU code from C 

Works decently for only the simplest of algorithms 

Proper porting is still an expert task 

The existing GPGPU libs/toolkits are easy-to-use 

Do enough ops per data to avoid PCI-E bottleneck 

Supercomputer network < PCI-E



A tale of one algorithm



A case: my latest algorithm



A case: my latest algorithm

One thread per one line



A case: my latest algorithm

Recursive algorithm executed at each iteration on a tree 

Data set for one thread fits easily into CPU cache 

Achieve 3.3 Gops/s on 2.5GHz Xeon, single-threaded



A case: my latest algorithm

GPU implementation 

Recursion was new and broken when I started 

Manual implementation w/ global memory stack 

At this point made over 10 revisions of the algorithm 

The fastest one also used in CPU



A case: my latest algorithm

With GPUs, 2k threads in-flight 

Cache usage becomes critical 

Spent significant amount of time optimizing 

5x boost in performance 

Result: 

65% of accesses caught by the L1 cache 

35% causes 58GB/s traffic



A case: my latest algorithm
Adjacent threads execute different amount of iterations 
of the “recursive” algorithm 

If one does 100 iterations, other 31 have to wait 

Measured utilization caused by this 18% 

We still achieve 71 Gops/s  

(400 Gops/s if utilization were 100%) 

60% of the theoretical maximum 

It took 3 months to optimize, and I’m not new to this



A case: my latest algorithm

A sweep took 190ms on CPU, 3.13ms on GPU 

60x improvement 

If we extrapolate to a faster 6-core CPU, and assume 
linear scaling w/ multithreading, it’s 8x improvement 

Still not bad for an algorithm that at first looked like a 
suboptimal GPGPU candidate (recursive, low utilization, 
not enough cache, scattered reads)



Conclusion

GPUs 

3x the performance per transistor 

Faster global memory 

The cost: removed logic 

Keeping the efficiency up is now up to the programmer



Conclusion

Porting to GPGPUs is generally an expert task 

In my opinion will not be properly automatized in near 
future (except for simple loops) 

GPUs are specialized, but HPC can benefit from them 

Toolkits and external libs have optimized standard 
routines and are easy to use


