
GPGPUs in HPC
VILLE TIMONEN
Åbo Akademi University

2.11.2010 @ CSC

Content
Background
How do GPUs pull off higher throughput
Typical architecture
Current situation & the future
GPGPU languages
A tale of one algorithm
Conclusion

Background
Before GPGPU* “broke through”, people mapped
physics problems as graphics operations

Programming using e.g. OpenGL shaders

The specialized graphics HW was efficient for such
operations

*) General-purpose computing on graphics processing units

Background
On the graphics programming front, graphics libraries’
abstractions are constantly being relaxed

The usual HW is not limited to these abstractions and
capable of much more

-> Graphics is also asking for something that exposes
the actual hardware better

Background
The hardware had been ready..

So there was need for GPGPU languages:

Graphics GPGPU General-purpose

Graphics wanted more
freedom with the cost of
performance (optimized
pipelines)

General-purpose
computation wanted

more performance with
the cost of algorithmic

freedom

How do GPUs pull off higher throughput

How do GPUs achieve high perf.
It is important to understand where this performance
comes from

Let’s begin by taking a commonly known CPU:

How do GPUs achieve high perf.
Remove logic that tries to keep the exec. units busy

And reduce the size of the cache :-(

How do GPUs achieve high perf.
Expand the SIMD units to process even more elements
at once, and add registers to allow going for SIMT

How do GPUs achieve high perf.
Multiply (up to 16-30 cores)

Pack in fast memory and a capable memory controller

How do GPUs achieve high perf.

It’s all about how to use your transistor budget

Summary:

Logic that tries to keep the execution units busy at all
times is greatly reduced, and so is the cache

Expand SIMD

Make many cores

Furthermore, GPUs have more transistors than CPUs

Core i7-980X (6-core) has 1.2G, a GTX480 has 3G

How do GPUs achieve high perf.

What about these 100x perf. improvement boasts?

Unfounded. Usually based on suboptimal/bloated/
single-threaded CPU implementations

There is up to 8 times the memory bandwidth, and
up to 10 times the raw arithmetic throughput in a
GPU

The extra logic in CPUs cover up for badly optimized
code -> In fact easier to get good performance with
CPUs

The downside

GPUs are specialized, not for all problems:

Doesn’t parallelize -> don’t consider GPGPU

Parallelizes but is control-heavy -> poor perf.

Depends on a large cache -> not available

Data-intensive requiring a data set larger than 6GB  
-> CPU <-> GPU transfers will kill the perf.

The downside

An even larger issue is programming complexity

Making most of a GPU requires you to have either 
(i) Very simple algorithms 
(ii) Expert GPU programming skills

Typical architecture

Typical architecture
Issues the same instruction to multiple exec. units

w/ CPUs, we manually packed the vectors (SIMD, e.g. SSE)

GPUs abstract this to concurrent threads (SIMT)

Optimal perf. only when threads agree on exec. path

Typical architecture

Typical CPUs devote loads of transistors to logic that
keeps the exec. units from stalling

GPUs hide latencies and data dependencies by having
thousands of threads in-flight to choose from

Switching between threads essentially a no-op

Typical architecture

GPUs have lots of registers (e.g. 128kB/core) to store
contexts for so many threads

They have small on-chip memory (e.g. 64kB/core) that
can be manually accessed

Very little per thread, but good for communication

Fast global off-chip memory, be careful with accessing

Typical architecture

Avoid bank conflicts with the on-chip memory

Very important:

Global memory access patterns can make or break
performance

With the exception of Fermi, there’s no cache, and
requests map directly to controller transactions

The Fermi architecture

The fastest version is the enthusiast GTX480 (1.5GB)

Slightly slowed-down Teslas exist w/ larger memory

3GB or 6GB of ECC @ 144GB/s

768kB L2 cache on top of the global memory

14 cores (448 exec. units total -- i7-980x has 24)

Up to 1 Tflop/s single precision, 0.5 Tflop/s double  
(i7-980x does ~140G / 70G respectively)

The Fermi core

32 exec. units

Dual-scheduler

Capable of running a kernel
independently

On-chip mem. configurable as L1

The big picture

Mem

i7-980x

20 GB/s

160 Gflop/s

Mem

C2070

140 GB/s

1030 Gflop/s

8 GB/s* 
PCI-E6 GB/s*

Seastar2
(inter-node)

*) ~2GB/s in practice
*) ~5GB/s in practice

Current situation & the future

Current vs. future

Scheduling
logic

Utilization

Ease of
programming

Generalization

Throughput
(Gops/s)

Specialization

ATI

NVidia

Intel

Current vs. future
Could we combine a GPU and a CPU into a hybrid?

They are architecturally different, that’s the whole idea

They both have global memory and a cache on top of it

We could probably unify these -> fast communication

CPU mem. is too slow currently

We could put the extra CPU logic to only some of the
GPU cores!

Current vs. future

GPGPU languages

GPGPU languages

High level languages:

OpenCL

C for CUDA (NVidia)

DirectX Compute (Microsoft)

Cal/Brook+ (ATI, but prefer OpenCL)

GPGPU languages

OpenCL

Khronos’s GPGPU standard

Everyone’s in it: AMD, Intel, Apple, Nokia, NVidia...*

So it moves slowly

*) Except Microsoft of course, who wants their proprietary solutions to triumph over the open ones

GPGPU languages
CUDA
NVidia’s solution for early adopters
Has been around the longest, most mature
Support for every new hardware feature NVidia releases
will be immediately available
Has optimized libraries (by NVidia) for common tasks:

BLAS routines (all levels)
Sparse matrix operations
Pseudo random number generation
FFT routines, etc...

GPGPU languages

Choose OpenCL whenever you can

If you do something fancy you might need CUDA

If plan on using ready-made libs, today, choose CUDA

GPGPU languages

The future?

Some compilers already make GPGPU code from C

Works decently for only the simplest of algorithms

Proper porting is still an expert task

The existing GPGPU libs/toolkits are easy-to-use

Do enough ops per data to avoid PCI-E bottleneck

Supercomputer network < PCI-E

A tale of one algorithm

A case: my latest algorithm

A case: my latest algorithm

One thread per one line

A case: my latest algorithm

Recursive algorithm executed at each iteration on a tree

Data set for one thread fits easily into CPU cache

Achieve 3.3 Gops/s on 2.5GHz Xeon, single-threaded

A case: my latest algorithm

GPU implementation

Recursion was new and broken when I started

Manual implementation w/ global memory stack

At this point made over 10 revisions of the algorithm

The fastest one also used in CPU

A case: my latest algorithm

With GPUs, 2k threads in-flight

Cache usage becomes critical

Spent significant amount of time optimizing

5x boost in performance

Result:

65% of accesses caught by the L1 cache

35% causes 58GB/s traffic

A case: my latest algorithm
Adjacent threads execute different amount of iterations
of the “recursive” algorithm

If one does 100 iterations, other 31 have to wait

Measured utilization caused by this 18%

We still achieve 71 Gops/s

(400 Gops/s if utilization were 100%)

60% of the theoretical maximum

It took 3 months to optimize, and I’m not new to this

A case: my latest algorithm

A sweep took 190ms on CPU, 3.13ms on GPU

60x improvement

If we extrapolate to a faster 6-core CPU, and assume
linear scaling w/ multithreading, it’s 8x improvement

Still not bad for an algorithm that at first looked like a
suboptimal GPGPU candidate (recursive, low utilization,
not enough cache, scattered reads)

Conclusion

GPUs

3x the performance per transistor

Faster global memory

The cost: removed logic

Keeping the efficiency up is now up to the programmer

Conclusion

Porting to GPGPUs is generally an expert task

In my opinion will not be properly automatized in near
future (except for simple loops)

GPUs are specialized, but HPC can benefit from them

Toolkits and external libs have optimized standard
routines and are easy to use

