GPGPUs in HPC
VILLE TIMONEN
Abo Akademi University

2.11.2010 @ CSC

Content

® Backgrounad

x How do GPUSs pull off higher throughput
» [ypical architecture

. Current situation & the future

®x GPGPU languages
® A tale of one algorithm

® Conclusion

Background

x Before GPGPU” “broke through”, people mapped
ohysics problems as graphics operations

x Programming using e.9. OpenGL shaders

® [he specialized graphics HW was etficient for such
operations

") General-purpose computing on graphics processing units

Background

x On the graphics programming front, graphics libraries’
abstractions are constantly being relaxed

x [he usual HW Is not limited to these abstractions and
capable of much more

® -> (Graphics is also asking for something that exposes
the actual hardware better

Background

® [he hardware had been ready..

®x SO0 there was need for GPGPU languages:

Graphics =—» GPGPU <= (General-purpose

General-purpose
computation wanted
more performance with
the cost of algorithmic
freedom

Graphics wanted more
freedom with the cost of
performance (optimized
pipelines)

Y Y Y X Y Y rrYryy

280080099

53
os:
ots:
®
J)J
.0
)‘J./
349
.))/
))/
I
eLh
J
323
j~|

: e e et
.40 a 0SSO Yy

._.,5,,
).. JJ)J).)).J-

)) NS

- - iy -y

0000000000

JJNN«J))))_/) Y

o 5y
!

e

How do GPUs achieve high per.

» [{ |Ss Important to understand where this performance
comes from

x | et’s begin by taking a commonly known CPU:

Out-of-order control logic

Fancy branch predictor

Memory pre-fetcher

Execution

Context
Data cache

(A big one)

How do GPUs achieve high per.

= Remove logic that tries to keep the exec. units busy

® And reduce the size of the cache :-(

Fetch/ Out-of-order control logic
Decode

Fancy branch predictor Fetch/

Memory pre-fetcher

Execution

Context
Data cache

(A big one)

Execution
Context

How do GPUs achieve high per.

» Expand the SIMD units to process even more elements
at once, and add registers to allow going for SIM T

Decode
Decode

Bt o] cox] o] cex
o co cox] e

Shared Ctx Data

How do GPUs achieve high per.

= Multiply (up to 16-30 cores)

x Pack In fast memory and a capable memory controller

Fetch/
Decode

,
S

EE(EE

Shared Ctx Data

How do GPUs achieve high pert.

» [t’s all about how to use your transistor budget

® Summary:

® | ogic that tries to keep the execution units busy at all
times Is greatly reduceq, and so Is the cache

® Expand SIMD

x \lake many cores

x Furthermore, GPUs have more transistors than CPUs

® Core 17-980X (b-core) has 1.2G, a G

X480 has 3G

How do GPUs achieve high perf.

= \\Vhat about these 100x perf. iImprovement boasts?

® [Unfounded. Usually based on suboptimal/bloated/
single-threaded GPU implementations

® [here Is up to 8 times the memory bandwidth, and
up to 10 times the raw arithmetic throughput in a
GPU

x [he extra logic in GPUs cover up for badly optimized
code -> In fact easier to get good performance with
CPUs

1 he downside

®x GPUs are specialized, not for all problems:
» Doesn’t parallelize => don‘t.consider GPGPU
® Parallelizes but Is control-heavy -> poor pert.
= Depends on a large cache -> not available

x Data-intensive requiring a data set larger than 6GB
> CPU <-> GRU transters will Kill the pert.

1 he downside

® An even larger Issue s programming complexity

x Making most of a G

(i) Very simple algorit

()

=xpert GPU prog

PU requires you to have either
glagls

ramming skills

o

505°,

60ad,
o

J

33

/)
v

v J'j
o ",

J
BB SO0
J)JJJ.) 0
B 50 B B
P P _Pe P
_J))_1":)

) o
- P

S
<)
0.9

-‘I‘)’\).)):;h).
J
08
ol
B9
JJ
®

J
J
& e P
8.6, 0

3
RO,
)
333
J
DB O
8 o
'f,)")')'_

>
5,
8,8
e
3
-
JJ
R"

b
SPer
J

o3

J
s
4
o
) |

Soses

35
d

o)

J

J

WYY YY) Y Y Y Y Y Y imsm
1000000 NI Ay Y
YY YY)y P00 00099
‘‘‘‘‘‘‘‘ - y PN
YY Yy yY 'YX XYy)
100008 YY)
....... ~ N PSPPI
009989 Y
- : N
g Py
YyYyyY

............

lypical architecture

Issues the same instruction to multiple exec. units
w/ CPUs, we manually packed the vectors (5IMD, e.g. SSE)
GPUs abstract this to concurrent threads (SIMT)

Optimal perf. only when threads agree on exec. path

if (x > 9) {
y = pow(x, exp);
y *= Ks;
refl = y + Ka;

} else {
X = 0;

e = Ka;

lypical architecture

x [ypical CPUs devote loads of transistors to logic that
keeps the exec. units from stalling

®x GPUs hide latencies and data dependencies by having
thousands of threads in-flight to choose from

® Switching between threads essentially a no-op

lypical architecture

x GPUs have lots of registers (e.g. 128kB/core) to store
contexts for so many threads

®x [hey have small on-chip memory (e.g. 64kB/core) that
can be manually accessed

» \ery little per thread, but good for communication

® Fast global off-chip memory, be careful with accessing

lypical architecture

® Avoid bank conflicts with the on-chip memory

® \ery important:

® (Global memory access patterns can make or break
performance

x \With the exception of Fermi, there’s no cache, and
requests map directly to controller transactions

The Fermi architecture

® [he fastest version Is the enthusiast G1 X480 (1.5GB)
® Slightly slowed-down Teslas exist w/ larger memory
x 3GB or 6GB of ECC @ 144GB/s
® /08KB L2 cache on top of the global memory
®x 14 cores (448 exec. units total -- 17-980x has 24)

x Up to 1 Tflop/s single precision, 0.5 Tflop/s double
(I7-980x does ~140G / 70G respectively)

The Fermi core

x 32 exec. units
» [yal-scheduler

x Capable of running a kernel
iIndependently

x On-chip mem. configurable as L1

’II
‘II

The big picture

160 Gﬂop/s

8 GB/s*
6 GB/s PCI-E

1/ -980x

Seastar2 1030 Gﬂop/s
(inter-node) 20 GB/ 3

C2070

") ~2GB/s in practice ?

) ~6GB/s in practice 140 GB/s

Y Y Y ryY rYrYrrYr YXrYyy»»
NI I P P iy

PRS0 PODREO0000EeE00000000000000500800

WNHHNNNNNNN““”“””nw“”“mmmmmmmmw

0000000000000 OCOCOCOPOOOS 2 9.0.0.00000908
Secooo0e0ceceeeooce00co 0P) :

b,
3
5,

000000000000000000490
0000000000000 0000(

-~
¥

e

YA

gjjﬂ
S5y
B0
333
508

£33

JJJ.
o Bt
.ij%"‘

Jl'

sSsts
J)JJ
5 ®
)

J
5
J3.5

ot
333
o>,
oS0
)J
J’))
+ 3

g e
BB,
Boo0.
S35
) o J
P)

P Pe

Sob g
55
<>

d J

33
g0 gy
e

8
ol
000,
J-)J)

|

B
JJ
T34)
o5
o
o

6®s®,
5040,
<3
5.0
Y
) |
) |

343
33
B8
S
»)J
-

»
33

=y
”)
4
]
»
>
o

Current vs. future

Throughput
(Gops/s)

Specialization

Al

NVidia

Intel

sScheauling
[efe][e

Utilization

SHSE O]
programming

(Generalization

Current vs. future

x Could we combine a GPU and a CPU into a hybrid?

® [hey are architecturally-aifferent; that's the whole idea
x [hey both have global memory and a cache on top of it
x \\e could probably unity these -> fast communication

s CPU mem: s too slow: currently

= \Ve could put the extra CPU logic to only some of the
GPU cores!

Current vs. future

CUDA GPU Roadmap

16 Maxwell

14

;g 12
=
w 10
)
Q.
é; 8
5 6 Keplgr
a 3
Fermi
2

2007 2009 2011 2013

- o’
505°,
60ad,
o
J
33

//
v
v J'j
JJ

.................C..0..........0*6
S00000 000000 OOCOCOOCOCOOOOCOOGCOCOOOCOCQRARTSE
L0000 0C000000C000COROOGROOGOQCROOORROOL

J
BB SO0
J)JJJ.) 0
B 50 B B
P P _Pe P
_J))_1":)

) o
- P

S
<)
0.9

-‘I‘)’\).)):;h) |
J
08
ol
B9
JJ
®

J

J
& e P
8.6, 0

3
RO,
)
333
J
DB O
8 o
'f,)")')'_

b,
3
343
o
5
-
JJ
Y

b
B8
J

o3

7
33
._)J
el
4
o
) |

Soses

3R
o

6,

6

9

WYY YY) Y Y Y Y Y Y imsm
1000000 J.J).)))J/)
YY YY)y P00 00099
‘‘‘‘‘‘‘‘ - y PN
YY Yy yY 'YX XYy)
100008 YY)
....... ~ N PSPPI
009989 Y
- : N
g Py
YyYyyY

............

GPGPU languages

= High level languages:

x OpenCL

x G for CUDA (NVidia)

n Directx Gompute (Microsort)

» Cal/Brook+ (ALl :but prefer OpenClL)

GPGPU languages

= OpenCL

x Khronos’s GPGPU standard
® Everyones in it: AMD, Intel, Apple, Nokia, NVidia...”

® SO It moves slowly

) Except Microsoft of course, who wants their proprietary solutions to triumph over the open ones

GPGPU languages

x CUDA

» NVidia’s solution for early adopters

®x Has been around the longest, most mature

® Support for every new hardware feature NVidia releases
will be immediately available

® Has optimized libraries (by NVidia) for common tasks:
®x BLAS routines (all levels)
® Sparse matrix operations
®x Pseudo random number generation

x -] routines, etc...

GPGPU languages

® Choose OpenClL whenever you can

x [f you do something fancy you might need CUDA

x |f plan on using ready-made libs, today, choose CUDA

GPGPU languages

x [he future?
. Some compilers already make GPGPU code from C
n \\Vorks decently for only:the simplest of algorithms
n Proper poring:Is still-an expert task
x [e existing GPGPU: lios/toolkits are easy-to-use
» DO enoughops per data to avoid PCI-E bottleneck

® Supercomputer network < PCI-E

- o’
505°,
60ad,
o
J
33

/)
v

v J'j
o ",

‘..‘......O.....O.OO.....................0.......00 A.\
V000000 OOOOOROOEROROOON

J
BB SO0
J)JJJ.) 0
B 50 B B
P P _Pe P
_J))_1":)

) o
- P

S
<)
0.9

-‘I‘)’\).)):;h).
J
08
ol
B9
JJ
®

J
J
& e P
8.6, 0

3
RO,
)
333
J
DB O
8 o
'f,)")')'_

b,
3
343
o
5
-
JJ
Y

b
B8
J

o3

7
33
._)J
el
4
o
) |

Soses

3R
o

6,

6

9

WYY YY) Y Y Y Y Y Y imsm
1000000 NI Ay Y
YY YY)y P00 00099
‘‘‘‘‘‘‘‘ - y PN
YY Yy yY 'YX XYy)
100008 YY)
....... ~ N PSPPI
009989 Y
- : N
g Py
YyYyyY

............

A case: my latest algorithm

!]
3 !] } .
]] !
]]
]]]]

A case: my latest algorithm

One thread per one line

A case: my latest algorithm

® Recursive algorithm executed at each iteration on a tree
® Data set for one thread fits easily into CPU cache

® Achieve 3.3 Gops/s on 2.5GHz Xeon, single-threaded

A case: my latest algorithm

x GPU implementation

x Recursion was new and broken when | started

x Manual implementation w/ global memory stack

x At this point made over 10 revisions of the algorithm

® [he fastest one also used in CPU

A case: my latest algorithm

x \With GPUs, 2k threads in-flight
x Cache usage becomes critical
x Spent significant amount of time optimizing

® 5X boost In performance

= Result:
®x 65% of accesses caught by the L1 cache

x 35% causes 58GB/s traffic

A case: my latest algorithm

® Adjacent threads execute different amount of iterations
of the “recursive” algorithm

® |[f one does 100 iterations, other 31 have to wait

®x Measured utilization caused by this 18%

= \\e still achieve 71 Gops/s
x (400 Gops/s if utilization were 100%)
®x 60% of the theoretical maximum

® |t took 3 months to optimize, and I'm not new to this

A case: my latest algorithm

® A sweep took 190ms on CPU, 3.13ms on GPU
® 00X Improvement

® |f we extrapolate to a faster 6-core CPU, and assume
linear scaling w/ multithreading, it's 8x improvement

x Still not bad for an algorithm that at first looked like a
suboptimal GPGPU candidate (recursive, low utilization,
not enough cache, scattered reads)

Conclusion

x GPUs
® 3X the performance per transistor
® [aster global memory

» [he cost:removedlogic

» Keeping the efficiency up Is now up to the programmer

Conclusion

= Porting to GPGPUS s generally an:expert task

= [N my opinion - will-notbe properly-automatized innear
future (exceptior simple l0ops)

» GPUs are specialized, but HPG can benefit from them

» [oolkits and external libs have optimized standard
routines and are easy to use

