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| AMBIENT OCCLUSION
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| AMBIENT OCCLUSION

Components of Light

» Physically no need to treat different light sources differently

» However different approximations/algorithms surtable for
each type

» Ambient occlusion (AQ) approximates lighting from uniformly lit
surroundings

» Complements direct lighting from local light sources (lamps, etc)
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Components of Light
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| AMBIENT OCCLUSION

Want to produce this:
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| AMBIENT OCCLUSION

Definition of AO

» Screen consists of [-2M points (e.g. 1920x 1080, FullHD)

» For each point, determine whether there Is surrounding occluders

“Skylight”

AO(p.n) = %LV(p.(o)n-(od(o.
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Definition of AO

» In addition to on/off visibility (skylight), the surrounding seometry
also reflects light (otherwise indoor scenes would be pitch black)

» Add a falloff term F that tapers off as a function of distance

+ F(0) = I, F(inf) = 0

A(p, i) = + / F(D(p,@)) i - Gdi

 Now need to know distance to occluder, D
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2 SCREEN-SPACE AMBIENT OCCLUSION

» Used In real-time graphics (computer games)
» Fast but uses Incomplete geometry of the scene: a depth buffer

» Depth buffer (aka Z buffer) is a free by-product of a rendering
bipeline

» Used to determine visibility

» Distance value (camera -> geometry) for each screen pixel
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2 SCREEN-SPACE AMBIENT OCCLUSION

Example depth buffer (dark = far, light = near)
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Depth to Helight

* Flip the depth buffer around and
it becomes a height field

* We don't know what's behind the
first layer

* For now, let's assume it
represents solid geometry

» Can be linearly interpolated
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3 PREVIOUS METHODS

2D integral to Kx D

» Instead of evaluating the 2D Integral, decompose it iInto multiple
(K) ID integrals

Here K=8

BliERifem each receiver point (screen pixel), occluders are seafeics
in K azimuthal directions



3 PREVIOUS METHODS

Marching along one of the K directions
» Jake steps (Sn) of constant length along the direction

» Keep track of horizon angle
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Marching along one of the K directions

* When the horizon (from P to Sn) exceeds the previous max, the
new point (Sn) Is visible to P

S| not visible
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Marching along one of the K directions
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Marching along one of the K directions

* When the horizon (from P to Sn) exceeds the previous max, the
new point (Sn) Is visible to P
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3 PREVIOUS METHODS

Marching along one of the K directions

* Integrate occlusion along the horizon angle piece-wise

* From a visible point to the next (tangent at P -> So -> 5; -> $3)

* Rinse and repeat for each K and for each pixel



3 PREVIOUS METHODS

Marching along one of the K directions

* Let h, be a vector from P to (a visible) S (we call this a horizon
vector)

* Integrate occlusion along the horizon vectors piece-wise

camera C




3 PREVIOUS METHODS

The problem

» Falloff defined In world space: AO effect can span arprtrary
lengths on screen

» Often need many steps per direction before contribution has
fallen enough to be cut

» Cannot afford to take hundreds of samples per direction

« What to do’



3 PREVIOUS METHODS

» Jakes 2 seconds/frame, way too slow



3 PREVIOUS METHODS

Sparser sampling farther from receiver

» Now It's fast enough, but some pixels hit occluders, some miss..



3 PREVIOUS METHODS
MIPMAP

« Got rid of the blockiness, but...



3 PREVIOUS METHODS
MIPMAP

MIIFIRA

* No longer artefacts, but

systematic underocclusion : oy
r'ror i W

black = 20%
white = 0%
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4 OUR METHOD

Teaser

our method reference

* Same number of samples as
in MIPMARP but significantly i

closer to truth black = 20%
white = 0%




4 OUR METHOD

Otherwise the same except the data used for sampling...

» MIPMAPs flatten the geometry

» Instead, we would like to retain Is the silhouette of the geometry
as seen from any recelver point

» Silhouette Is formed by local maxima of the height field

| et’s start with that...



4 OUR METHOD

We generate an intermediate geometry proxy

* [raverse the height field in parallel lines, a step at a time

» bvery Bo steps (here Bo=3) we write out the highest value on the
ine




4 OUR METHOD

We generate an intermediate geometry proxy

» Recall that we split the 2D
integral into K | D integrals

SECrel these should
represent the entire sector

(2*PI/K)

* 50 Instead of sampling the
maximum heights along one
ine, want to take average
maximum height along the
sector's width




4 OUR METHOD

We generate an intermediate geometry proxy

» Calculate running sums of the
maximum heights

» Getting the average becomes

(Al ]-Allio])/(11-10)




4 OUR METHOD

» Maximum heights represent silhouette only when the receiver Is
horizontal to the caster

* |[n addrtion, we can project maximum height along multiple
viewing directions (left)




4 OUR METHOD

* This has an alternative interpretation: Intersections of the
projections describe a convex hull of the geometry (right)

» Edges of the convex hull can be used as the endpoints (Sn) of
the horizon vectors (hn)




4 OUR METHOD

» Of particular interest Is the case of 2 viewing directions
* The convex hull Is reduced to a single point

» Can be used directly as the horizon vector end point Sy




4 OUR METHOD

Level of detall

* We generate multiple resolutions of the projections
» Differ In the range the max is taken over of
» Combined by maxing higher resolutions

» Used when sampling farther from the receiver
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5 RESULTS

QOur methog

Reference



5 RESULIS

Our, K =8 X 2 Our, K = 16 x 2 Mipmap, K = 16

errorxs

ea = 1.17%, e«59 = 98.9% ea = 0.92%, e<59 = 99.8%

y

ea = 1.92%, e.59, = 93.3% ea = 1.27%, e.59, = 98.5%




5 RESULIS

Table 1: Total render times of the far-field occlusion component

Method 7970 (OpenCL) GTX 580 (CUDA)
1280(+4256) x 720(+144), By = 10:

Our, K =8 x 2 7.26 ms 12.0 ms

Our, K =16 x 2 13.3 ms 23.6 ms
Mipmap, K = 16 19.2 ms 17.7 ms
1920(+384) x 1080(+216), Bo = 10:

Our, K =8 x 2 16.7 ms 29.4 ms

Our, K =16 x 2 31.6 ms 58.1 ms
Mipmap, K = 16 31.5 ms 37.9 ms

Roughly as fast as the MIPMAP method



